Akustische Messungen Verlustfaktor / Speichermodul

Kurzbeschreibung: Verglichen wird das Ausgangssignal oberhalb der Probe mit dem Eingangssignal des Shakers. Die so ermittelte Übertragungsfunktion gibt Auskunft über das mechanische Dämpfungsverhalten eines homogenen Werkstoffes.

Anregung: Weißes Rauschen über Leistungsverstärker und Shaker.

Meßwertaufnehmer: 2 Beschleunigungsaufnehmer und Ladungsverstärker.

Meßbereich: 25 Hz bis max. 6.000 Hz; gewählter

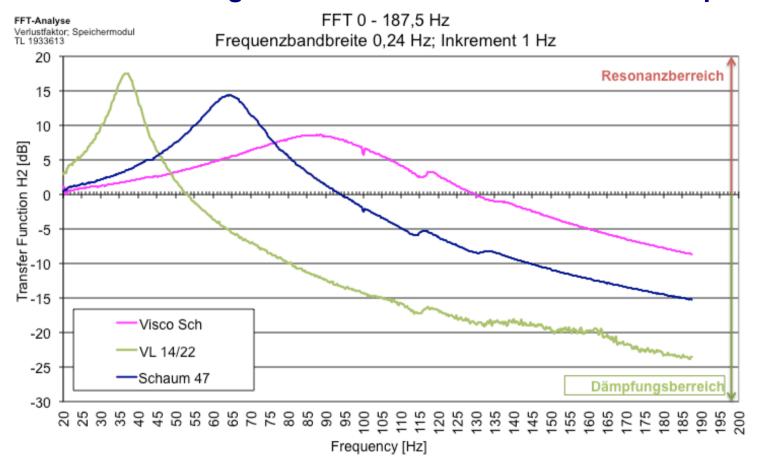
Frequenzbereich unterteilt in 768 Linien

Prüfprobe: Plane Probe (50 x 50 mm); homogener

Werkstoff.

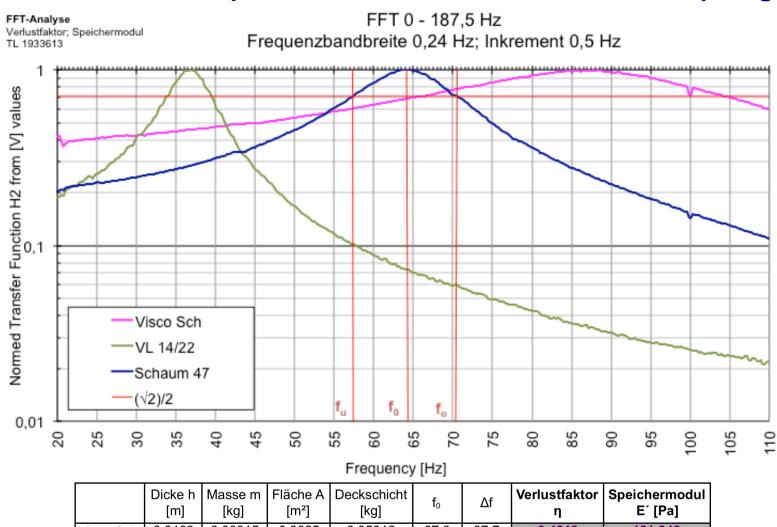
Auswertung: Frequenzbezogenes Amplitudenverhältnis (FFT-Analysator); Verlustfaktor und Speichermodul (PC).

Einsatz: Grundlagenforschung; Produktentwicklung;

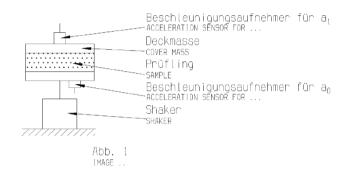

Qualitätssicherung.

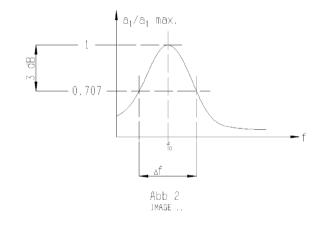
Normen: BMW-TL 1933613 (50 g Resonanzgewicht

entspricht 20 kg/m² Schwermasse).


Akustische Messungen Resonanz unterschiedlicher Dämpfungen

Berechnung dee Amplitudenverhältnisses aus Beschleunigung für jede Frequenzlinie: Amplitude=20*lg(10^(Eingang-Shaker/20)/10^(Ausgang-Probe/20)) [dB]


Anmerkung: Bei Faser- und Vliessystemen kann aufgrund horizontaler Krafteinleitung in die Probe die "Coherence" von Ein- und Ausgangssignal zusammenbrechen.


Verlustfaktor und Speichermodul unterschiedlicher Dämpfungen

	Dicke h [m]	Masse m [kg]	Fläche A [m²]	Deckschicht [kg]	f_0	Δf	Verlustfaktor η	Speichermodul E´ [Pa]
Visco Sch	0,0189	0,00315	0,0025	0,05046	87,3	37,7	0,4318	121.943
VI 14/22	0,022	0,0043	0,0025	0,05046	36,75	8,25	0,2245	25.693
Sch 47	0,03	0,0058	0,0025	0,05046	64,25	16,75	0,2607	110.024

Bestimmung Verlustfaktor / Speichermodul aus Resonanzen

Verlustfaktor: $\eta = \Delta f/f_0$

Speichermodul: $E' = (2 * \pi * f_0)^2 * m * h / A [Pa]$

mit

f₀ = Eigenfrequenz des Systems [Hz]

Δf = Resonanzbreite [Hz]

m = Proben- + Deckmasse [kg]

h = Probendicke [m]
A = Probenfläche [m²]

Resonanzberechnung mit veränderten Deckschichten bei gleicher "Federsteifigkeit" c erfolgen über:

 $\omega_{1-2}^2 = c / m_{1-2}$ und nach umformen $f_2 = f_1 * \sqrt{(m_1 / m_2)}$

mit
$$\omega_{1-2} = 2 * \pi * f_{1-2}$$
 [Hz]

Prüfanweisung: ...

Vorlagen zur Auswertung: ...