Formelsammlung

Formelsammlung

Formelsammlung

Formelsammlung

Formelsammlung

Formelsammlung

Formelsammlung

Formelsammlung

Formelsammlung

1	Grundlagen
т.	Grunulagen

	Bezugsgrößen für Schalldruck; Schallleistung	Seite 2
	• Filterkurven A-; B-; C-Gewichtung	Seite 3
	Terz-; Oktavfilter und deren Bandbreiten	Seite 5
	Rauschsignale / Impulse	Seite 7
2.	Luftströmungswiderstand	
	Definition	Seite 10
	 Berechnung aus Faser- und Vlieseigenschaften 	Seite 11
	Luftströmungswiderstand perforierter, gelochter Folien und Platte	Seite 14
3.	Luftschallabsorption /Luftschalldämpfung	
	 Schallkennimpedanz (Impedanzrohr ISO 10 534) 	Seite 16
	 "Normierte" Luftschallabsorption 	Seite 20
	• Hallraum (ISO 354)	Seite 22
	 Bewertung des Absorptionsgrades nach ISO 11654 	Seite 28
4.	Luftschalldämmung /Luftschallisolation	
	Schalldämmass R basierend auf Schalleistung	Seite 31
	Apamat	Seite 31
	Decken-, Fensterprüfstand /LS-box	Seite 31
	Bewertetes Schalldämm-Maß	Seite 34
	Resonanz / Verlustfaktor / Speichermodul	Seite 36
5.	Intensität / Schalleistung für die "Weiße Industrie"	Seite 46
6.	Kraftfahrzeugakustik	
	Schalldruckpegel und Ordnungsanalyse	Seite 48
	Artikulationsindex	Seite 49
	Außengeräusch Vorbeifahrt ISO 362	Seite 52
	Bauteil- und Fahrzeuganalyse; Benchmark mittels Geräuschsimulation	
	Mittlere äquivalente Luftschallabsorption einer KFZ-Karosserie	Seite 53

٠	Lautsprechersimulation Reifen-, Motor-, Abgasmündungsgeräusch	Seite 55
•	Karosserie Einfügedämmung	Seite 58
٠	Nachhallzeit im Fahrzeug	Seite 59

1. Grundlagen

Der normale akustische Hörbereich liegt – bei jungen Personen – zwischen ca. 15 Hz bis 16.000 Hz. Im Frequenzbereich zwischen 1.000 und 6.000 Hz kann das Ohr – bei jungen Personen – Differenzdrücke bis hinunter zu 20 μ Pa wahrnehmen.

Verglichen mit dem statischen Druck der Atmosphäre von 1.013 hPa, ist das eine Variation von $2 * 10^{-10}$

In etwas anderer Schreibweise 101.300 Pa ± 0,000.020 Pa

Bezugsgrößen für Schalldruck; Schallleistung

Schalldruck: p_0 = 20 µPa; ($20*10^{-6}$ Pa)

Schalleistung: $W_0 = 1 \text{ pW}$; ($1 * 10^{-12} \text{ W}$)

Der Schalldruckpegel berechnet sich aus:

$$L_P = 10 * lg(\frac{p_{(t)}}{p_0})^2 = 20 * Lg(\frac{p_{(t)}}{p_0})$$

mit $p_{(t)}$ als Schalldruck zur Zeit t und p_0 = 20 µPa

Die Umkehrfunktion dazu:

$$p_{(t)} = p_0 * \ 10^{(\frac{L_p}{20})}$$

Der Schallleistungspegel berechnet sich aus:

$$L_w = 10 * lg(\frac{W}{W_0})$$

mit W als Schallleistung und $W_0 = 1$ pWals Bezugsgröße.

Die Umkehrfunktion dazu:

$$W = W_0 * 10^{(\frac{L_W}{10})}$$

Der Schallintensitätspegel berechnet sich aus:

$$L_I = 10 * lg(\frac{l}{l_0})$$

mit I als Schalintensität und $I_0 = 10^{-10} \frac{W}{m^2}$ als Bezugsgröße.

Filterkurven A-, B-, C-Gewichtung

"Linear": so misst das Messsystem ~gerät
"A"-bewertet: so hört der Mensch bis zu ca. 75 dB(A)
"B"-Bewertung für Pegel größer 75 dB(A) z.B. in/an Kraftfahrzeugen
"C"-Bewertung für sehr hohe Schalldruckpegel z.B. in/an Flugzeugen

Nicht dargestellt ausschließlich für die Luftfahrtindustrie die "D"-Filter Bewertung

A-, B-, C-Filter

Werte der Filterkurven A-, B-, C-Gewichtung

Mittenfrequenz [Hz]	Filterkurven [dB]			
	Lin	A-Filter	B-Filter	C-Filter
10	0	-70,4	-38,2	-14,3
13	0	-63,4	-33,2	-11,2
16	0	-56,7	-28,5	-8,5
20	0	-50,5	-24,2	-6,2
25	0	-44,7	-20,4	-4,4
32	0	-39,4	-17,1	-3,0
40	0	-34,6	-14,2	-2,0
50	0	-30,2	-11,6	-1,3
63	0	-26,2	-9,3	-0,8
80	0	-22,5	-7,4	-0,5
100	0	-19,1	-5,6	-0,2
125	0	-16,1	-4,2	-0,1
160	0	-13,4	-3,0	0,0
200	0	-10,9	-2,0	0,0
250	0	-8,6	-1,3	0,0
315	0	-6,6	-0,8	0,0
400	0	-4,8	-0,5	0,0
500	0	-3,2	-0,3	0,0
630	0	-1,9	-0,1	0,0
800	0	-0,8	0,0	0,0
1.000	0	0,0	0,0	0,0
1.250	0	0,6	0,0	0,0
1.600	0	1,0	0,0	-0,1
2.000	0	1,2	-0,1	-0,2
2.500	0	1,3	-0,2	-0,3
3.150	0	1,2	-0,4	-0,5
4.000	0	1,0	-0,7	-0,8
5.000	0	0,5	-1,2	-1,3
6.300	0	-0,1	-1,9	-2,0
8.000	0	-1,1	-2,9	-3,0
10.000	0	-2,5	-4,3	-4,4
12.500	0	-4,3	-6,1	-6,2
16.000	0	-6,6	-8,4	-8,5
20.000	0	-9,3	-11,1	-11,2

Terzband-, Oktavbandfilter und deren Bandbreiten Berechnung aus den Bandmittenfrequenzen

$$f_0 = \sqrt{f_u * f_o}$$
 und

für Terzen für Oktaven	$f_o = \sqrt[3]{2} * f_u$ $f_o = 2 * f_u$	ergibt sich nach Umformungen
für Terzen: für Oktaven:	$f_u = f_0 * \frac{1}{\sqrt[6]{2}}$ $f_u = f_0 * \frac{1}{\sqrt{2}}$	$f_o = f_0 * \sqrt[6]{2}$ $f_o = f_0 * \sqrt{2}$

mit

 f_0 als Bandmittenfrequenz

 f_o als obere Bandbegrenzungsfrequenz

 f_u als untere Bandbegrenzungsfrequenz

Terz-; Oktavfilter und deren Bandbreiten

Mittenfrequenz [Hz]	Terzbandbreite = Mittenfrequenz /2^(1/6); *2^(1/6)		Oktavbandbreite = Mittenfrequenz /2^(1/2); *2^(1/2	
	untere Grenzfrequenz gerundet [Hz]	obere Grenzfrequenz gerundet [Hz]	untere Grenzfrequenz gerundet [Hz]	obere Grenzfrequenz gerundet [Hz]
10	8,9	11,2		
12,5	11,2	14,0		
16	14,0	17,8	11	22
20	17,8	22,4		
25	22,4	28,2		
31,5	28,2	35,0	22	44
40	35,0	44,7		
50	44,7	56,2		
63	56,2	70,8	44	88
80	70,8	89,1		
100	89,1	112		
125	112	141	88	177
160	141	178		
200	178	224		
250	224	282	177	355
315	282	355		
400	355	447		
500	447	562	355	710
630	562	708		
800	708	891		
1.000	891	1.122	710	1.420
1.250	1.122	1.413		
1.600	1.413	1.778		
2.000	1.778	2.239	1.420	2.840
2.500	2.239	2.818		
3.150	2.818	3.548		
4.000	3.548	4.467	2.840	5.680
5.000	4.467	5.623		
6.300	5.623	7.079		
8.000	7.079	8.913	5.680	11.360
10.000	8.913	11.220		
12.500	11.220	14.130		
16.000	14.130	17.780	11.360	22.720
20.000	17.780	2.390		

Terz- und Oktavmittenfrequenzen nach ISO 266

	Normfrequenzen			Normfrequenzen
	gerechnet nach	1	Zahl	gerechnet nach
Zahl	ISO 266		Frequenz-	ISO 266
	f=1000*10^Zahl		band	f=2^(Zahl/3)
-20	10	1	10	10,07937
-19	12,58925	1	11	12,69921
-18	15,84893		12	16
-17	19,95262		13	20,15874
-16	25,11886	1	14	25,39842
-15	31,62278	1	15	32
-14	39,81072		16	40,31747
-13	50,11872		17	50,79683
-12	63,09573		18	64
-11	79,43282		19	80,63495
-10	100		20	101,59367
-9	125,89254		21	128
-8	158,48932		22	161,26989
-7	199,52623		23	203,18733
-6	251,18864		24	256
-5	316,22777		25	322,53979
-4	398,10717		26	406,37467
-3	501,18723		27	512
-2	630,95734		28	645,07958
-1	794,32823		29	812,74934
0	1.000		30	1.024
1	1.258,92541		31	1.290,15916
2	1.584,89319		32	1.625,49868
3	1.995,26231		33	2.048
4	2.511,88643		34	2.580,31831
5	3.162,27766		35	3.250,99735
6	3.981,07171		36	4.096
7	5.011,87234		37	5.160,63662
8	6.309,57344		38	6.501,99471
9	7.943,28235]	39	8.192
10	10.000]	40	10.321,27324
11	12.589,25412		41	13.003,98942
12	15.848,93192		42	16.384
13	19.952,62315		43	20.642,54648

Umrechnung von Terzpegeln in Oktavpegel

$$L_{oktav} = 10 * lg(10^{\left(\frac{L_{Terz1}}{10}\right)} + 10^{\left(\frac{L_{Terz2}}{10}\right)} + 10^{\left(\frac{L_{Terz3}}{10}\right)})$$

mit $L_{Terz n}$ als Schalldruckpegel der Terz n

Rauschsignale

Weißes Rauschen: Gleicher Schalldruck im Schmalband, +3 dB pro Oktave in den Terzbändern

Rosa Rauschen: Gleicher Schalldruck in den Terzbändern; -3 dB pro Oktave im Schmalband

Bandpass Rauschen: Abfallender Schalldruck außerhalb der gewählten Terzmittenfrequenz

Zum Vergleich die Schmalbandsignale

Weitere Signale hier nicht dargestellt: Sinus-Signal; Rechteck-Signal; Sägezahn-Signal

Dirac-Impuls oder δ -Funktion:

Die Dirac'sche Deltafunktion wurde 1927 von Dirac eingeführt, aber erst im Jahre 1950 von Schwartz in seiner Distributionstheorie mathematisch exakt als Limes einer Funktionenreihe erklärt.

1.
$$\delta(x - x_0) = 0$$

2. $\int_{x_1}^{x_2} \delta(x - x_0) dx = 1$
3. $\int_{-\infty}^{\infty} f(x) \delta(x - x_0) dx = f(x_0)$
4. $\int_{-\infty}^{\infty} f(x) \delta'(x - x_0) dx = -f'(x_0)$
5. $\delta(f(x)) = \frac{1}{|\frac{df}{dx}|_{x=x_0}} \delta(x - x_0)$

Die δ -Funktion schließt mit der Achse also die Fläche 1 ein und ist nur in einem Punkt verschieden von Null. Mathematisch erklärt ist die δ -Funktion als Grenzwert einer Folge von Funktionen, die alle die Fläche 1 einschließen und deren von 0 verschiedener Bereich über einem immer enger werdenden Intervall liegt.

Anwendung: Wird zum Teil in Hallräumen (Schreckschuss-Impulsanregung) und bei Modalanalysen (Impulshammer) benutzt.

Sprung-Funktion:

Die Heaviside-Funktion hat für jede beliebige negative Zahl den Wert null, andernfalls den Wert eins. Die Heaviside-Funktion ist mit Ausnahme der Stelle x = 0 überall stetig. In Formeln geschrieben heißt das:

 $\begin{array}{l} \Theta (x) : \mathbb{R} \longrightarrow \{0,1\} \\ x \longmapsto \{ \begin{smallmatrix} 0 : \, x < 0 \\ 1 : \, x \ge 0 \end{smallmatrix} \right.$

Anwendung: Schwingungs- und Festigkeitsanalysen

Darstellung der Funktionen

Bild Dirac-Impuls

Bild Sprung-Funktion

Die Rauschsignale sind selbstverständlich auch als Impulse verfügbar.

2. Luftströmungswiderstand

Der Luftströmungswiderstand ist die wichtigste Eigenschaft poröser Materialen die Luftschall absorbieren sollen.

Liegt der spezifische, Luftströmungswiderstand eines Werkstoffs in der Nähe der 2-fachen Kennimpedanz der Luft 820 Pa s/m in einem Bereich also von 600 - 1200 Pa s/m ist die Luftschallabsorption im optimalen Bereich.

Unterhalb 200 Pa s/m (¼ Kennimpedanz) und oberhalb 3200 Pa s/m (4-fache Kennimpedanz) wird die Fähigkeit eines Werkstoffs Luftschall zu absorbieren deutlich reduziert.

Luftströmungswiderstand nach EN 29053; ISO 9053:

Definition analog zum Ω 'schen Gesetz ist der Luftströmungswiderstand R definiert als Quotient aus der durch einen laminaren Luftstrom durch eine poröse Probe erzeugten Druckdifferenz Δp an der Probe und dem laminaren Luftstrom q_v durch die Probe.

$$R = \frac{\Delta p}{q_v}$$

mit Δp als Druckdifferenz beiderseits des Probenkörpers gegenüber dem Atmosphärendruck [Pa] q_v als durch den Probenkörper hindurchtretenden Volumenstrom [m³/s]

Der spezifische Luftströmungswiderstand R_s ist definiert als Produkt aus dem Luftströmungswiderstand R und der durchströmten Probenfläche A.

$$R_s = R * A$$

mit *R* als Strömungswiderstand des Probenkörpers [Pa s/m³]

A als Querschnittsfläche des Probenkörpers senkrecht zur Durchströmungsrichtung [m²]

Der längenbezogene Strömungswiderstand r ist, homogenes Probenmaterial vorausgesetzt, definiert als Quotient aus dem spezifischen Luftströmungswiderstand R_s und der Probendicke d.

$$r = \frac{R_s}{d}$$

mit R_s als spezifischem Luftströmungswiderstand [Pa s/m] d als Dicke des Probenkörpers in Durchströmungsrichtung [m]

Die lineare Strömungsgeschwindigkeit ist definiert als Quotient aus dem laminaren Luftstrom durch Probe und der durchströmten Probenfläche.

$$u = \frac{q_v}{A}$$

mit q_v als durch den Probenkörper hindurchtretenden Volumenstrom [m³/s] *A* als Querschnittsfläche des Probenkörpers senkrecht zur Durchströmungsrichtung [m²]

Durchströumungsgeschwindigkeiten von 5 bis 0,5 * 10⁻³ m/s sind zulässig als Luftgleichstrom bzw. Effektivwert eines Luftwechselstroms.

Berechnung aus Faser- und Vlieseigenschaften

Luftströmungswiderstand berechnet nach F.P. Mechel (Formulas of Acoustics)

Widerstand bei Anströmung parallel zur Faserachse

$$\Xi_{parallel} = 3,94 * \frac{\eta}{a^2} * \frac{\mu^{1,413}}{1-\mu} * (1+27\,\mu^3)$$

Widerstand bei kardierten Faservliesen mit

Faserdurchmesser 12 – 20 μm

$$\Xi_{senkrecht} = 10,56 * \frac{\eta}{a^2} * \frac{\mu^{1,531}}{(1-\mu)^3}$$

Faserdurchmesser $40-60 \ \mu m$

$$\Xi_{senkrecht} = 6.8 * \frac{\eta}{a^2} * \frac{\mu^{1,296}}{(1-\mu)^3}$$

Für beliebige Faserdurchmesser wird jeweils durch die beiden Faktoren und die beiden Exponenten jeweils eine 2-Punkte Gerade gelegt nach

$$\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - 1_1}$$

Damit ergibt sich

$$\Xi_{senkrecht} = Faktor * \frac{\eta}{a^2} * \frac{\mu^{Exponent}}{(1-\mu)^3}$$

mit

$$Faktor = 10,56 + \frac{(6,8 - 10,56)}{(25 - 8)} * (a - 8)$$

$$Exponent = 1,531 + \frac{(1,296 - 1,531)}{(25 - 8)} * (a - 8)$$

Widerstand bei aerodynamisch gebildeten Faservliesen

$$\Xi_{random} = 4 * \frac{\eta}{a^2} * (0.55 * \frac{\mu^{\left(\frac{4}{3}\right)}}{(1-\mu)} + \sqrt{2} * \frac{\mu^2}{(1-\mu)^3})$$

mit a als Radius der Faser [m]

 η als dynamischer Zähigkeit der Luft [Pa s]

Z.B. Luft bei 20°C und 1013 hPa Umgebungsdruck η = 18,2321365 µPa s

μ als Massivität des Faservlieses zu berechnen aus

 $\rho_{Vlies} = y * \rho_{Faser} + (1 - y) * \rho_{Luft}$

 ϕ als Porosität eines Faservlieses zu berechnen aus

$$\rho_{Vlies} = x * \rho_{Luft} + (1 - x) * \rho_{Faser}$$

und Massivität + Porosität = 1

Faserdurchmesser d und Faserradius a Berechnet aus Faserfeinheit [dtex] und Faserdichte [kg/m³]

Faserdurchmesser d[mm] =
$$\sqrt{\frac{4}{\pi} * \frac{1}{10} * \frac{Faserfeinheit [dtex]}{Faserdichte [\frac{kg}{m^3}]}}$$

mit

Faserradius
$$a = \frac{d}{2}$$

als Zahlenwertegleichung mit folgenden Erweiterungen der Einheiten

Faserfeinheit: 1 [dtex] = $\frac{1[g]}{10^4 [m]}$

Faserdichte: $\frac{1[kg]}{1[m^3]} = \frac{10^3[g]}{1[m^3]}$

Fläche: $1 m^2 = 10^6 mm^2$

Umrechnung der Einheiten denier [den] nach tex [tex]und dezitex [dtex]:

1 tex = 10 g Fasermasse auf 10.000 m Faserlänge 1 dtex = 1 g Fasermasse auf 10.000 m Faserlänge 1 den = 1 g Fasermasse auf 9.000 m Faserlänge

1 tex = 9 den oder 10 dtex = 9 den Der Faktor $\frac{dtex}{den}$ beträgt also $\frac{10}{9}$ = 1,111

1 dtex = 0,9 den; 1 den = 1,111 dtex

Beispiel:

2 den = 2,2 dtex 4 den = 4,4 dtex 6 den = 6,7 dtex 12 den = 13 dtex ...

Luftströmungswiderstand poröser, gelochter Folien und Platten

Zur Abschätzung des Spezifischen Luftströmungswiderstandes bei Materialien mit perforierten Folieneilagen sind die abgebildeten Graphen hilfreich.

Damit lässt sich über den zuvor experimentell oder per Simulation ermittelten notwendigen Strömungswiderstand ein erforderlicher Lochdurchmesser und die dazugehörige Lochteilung ermitteln.

Eine Bestätigung der Prognosen sollte am fertigen Materialkonzept durchgeführt werden.

Die Messtechnik und Mathematik hierzu:

Das Messgerät nach EN 29053 Verfahren "B" erzeugt einen Luftwechselstrom mit einem oszillierenden Kolben:

- Durchmesser 20 mm
- Hub 14 mm
- Frequenz 2 Hz

Bei einer Prüffläche mit dem Durchmesser 100 mm ergibt sich für die unbelegte Prüffläche eine Durchströmungsgeschwindigkeit von 4,976 mm/s

Mit folgenden Formeln für den Volumenstrom

$$V_{eff} = \frac{1}{\sqrt{2}} * \omega * \frac{\pi}{4} d^2 * h = 39081,64 \text{ mm}^3/\text{s}$$

und die Durchströmungsgeschwindigkeit

$$v_{eff} = V_{eff} * \frac{\pi}{4} d^2$$
 oder $v_{eff} = \frac{V_{eff}}{offene \ Fläche}$

jeweils auf Basis der Prüffläche des Messgerätes

Die Prüffläche bei 100 mm Durchmesser beträgt 7853,98 mm²

Über den (die) Lochdurchmesser der Perforation und deren dazugehörigen Teilungsfläche(n) lässt sich die durchströmte Fläche oder die Durchströmungsgeschwindigkeit in Bezug auf die Prüffläche bestimmen.

In den unten dargestellten Graphen ist jeweils der spezifische (gemessene) Luftströmungswiderstand über der durchströmten Fläche bzw. der Durchströmungsgeschwindigkeit dargestellt und folgen den Potentialfunktionen

für die Abhängigkeit der durchströmten Fläche und

$$y = b * x^{c}$$

für die Abhängigkeit der Strömungsgeschwindigkeit

Anhand dieser Graphen lassen sich für nahezu alle Kombinationen aus Lochdurchmesser und Lochteilung die dazugehörigen spezifischen Luftströmungswiderstände berechnen oder ablesen.

3. Luftschallabsorption

Luftschallabsorption ist die Fähigkeit eines Materials die Bewegung der Luftmoleküle zu verringern Luftschall, das heißt die Bewegung der Luftmoleküle in Wärme umzuwandeln.

Materialdaten die die Luftschallabsorption eines Werkstoffs beeinflussen:

- Dichte [kg/m3]
- Dicke [mm]
- Spezifischer Luftströmungswiderstand [Pa s/m] oder [Ns/m3]
- Porosität: "Luftanteil" im Werkstoff
- Tortuosity für poröse Fasersysteme: Kapilarenkrümmung im Werkstoff
- Viscous length für Faservliese und Schaumwerkstoffe.
- Thermal length für Faservliese und Schaumwerkstoffe.

Impedanzrohr nach ISO 10 534

Das erste Absorptionsmaximum bei Messungen im Impedanzrohr bei senkrechtem Schalleinfall liegt bei der Frequenz dessen ¼ Wellenlänge genauso dick ist wie das zu messende Absorptionsmaterial.

Schallkennimpedanz oder Wellenwiderstand eines Mediums

Die Schallkennimpedanz Z_F ist definiert als der Quotient aus Schalldruck und Schallschnelle.

"Die Schallkennimpedanz ist eine physikalische Größe und definiert sich über das Verhältnis von Schalldruck zu Schallschnelle. Ihr Formelzeichen ist Z_F und ihre abgeleitete SI-Einheit ist Ns/m³.

Bewegen sich Schallwellen von einem Medium in ein anderes (z. B. von Luft in Wasser), so werden sie an der Grenzfläche (in diesem Fall die Wasseroberfläche) umso stärker reflektiert, je größer die Differenz der Schallkennimpedanzen beider Medien ist. Der Schallreflexionsfaktor *r* ist das Verhältnis von Schalldruck p_r der an der Grenzfläche reflektierten Welle zu Schalldruck p_e der einfallenden Welle. Dieser ist auch das Verhältnis von der Differenz der beiden Schallkennimpedanzen zur Summe der Schallkennimpedanzen." (aus Wikipedia)

Der Schallreflexionsfaktor r lautet bei senkrechtem Schalleinfall:

$$r = \frac{Z_2 - Z_1}{Z_2 + Z_1} = \frac{p_r}{p_e}$$

Im Fernfeld, wenn Schalldruck und Schallschnelle in Phase sind, berechnet sich die Schallkennimpedanz Z_F reellwertig aus

$$\boldsymbol{Z}_{\boldsymbol{F}} = \frac{p}{v} = \frac{l}{v^2} = \frac{p^2}{l} = \boldsymbol{\rho} * \boldsymbol{c}$$

Schallkennimpedanz der Luft

Die Kennimpedanz der Luft ist definiert als Schallgeschwindigkeit der Luft * Dichte der Luft

$$Z_F = \rho * c = \rho_0 * \frac{p_u}{p_0} * \frac{1}{\frac{t_u}{T_0} + 1} * c_0 * \sqrt{\frac{t_u}{T_0} + 1}$$

mit:

 ρ_0 als Dichte der Luft bei 0°C = 1,293 kg/m³

 p_0 als normierter Luftdruck = 1013,25 hPa

 T_0 als Bezugstemperatur = 273,15 K = 0°C

 c_0 als Bezugsschallgeschwindigkeit der Luft bei 0°C = 331,5 m/s

 p_u als Luftdruck der Umgebung [hPa]

 t_u als Umgebungstemperatur [°C]

Über die Beziehung:

$$c = \lambda * \nu$$

mit *c* als Schallgeschwindigkeit der Luft [m/s] mit $c = c_0 * \sqrt{\frac{t_u}{T_0} + 1}$

 $c_0 = 331,5 \frac{m}{s} bei \ 0^{\circ}C$; $T_0 = 273,15 \ K$ und Umgebungstemperatur $t_u = 23^{\circ}C$

 λ als Wellenlänge [m] bei einer Frequenz ν

 ν als Frequenz einer Schallwelle [1/s]

lässt sich bei vorgegebener Frequenz ν und Schallgeschwindigkeit c die Wellenlänge λ bestimmen. ¼ dieser Wellenlänge entspricht der Probendicke einer Probe weil dann dort die Schallschnelle der Luftteilchen im Impedanzrohr maximal ist und die Luftschallabsorption dort ihr erstes Maximum erreicht.

Beispiel:

	1. Maximum [Hz]	Probendicke (λ/4) [mm]	c₀ bei 273,15 K [m/s]	Umgebungstemperatur [°C]
Probe 2	5000	17,3	331,5	23
Probe 2+3	2500	34,5		
Probe 2+3+4+5	1250	69,0		

Der Absorptionskoeffizient α kann bei dieser Messmethode nie höher als 1 oder 100% sein. Daher ist nur bei dieser Messmethode eine Skalierung in [%] erlaubt.

Ein diffuser Absorptionsgrad ist rechnerisch der Mittelwert aus Absorptionskoeffizienten aus Schalleinfallswinkeln von 0° senkrecht zur Probenoberfläche (Impedanzrohr) bis 80° fast horizontaler Schalleinfall. Ein solches Schallfeld bildet sich aus wenn der komplette Boden eines Hallraumes mit Absorptionsmaterial belegt ist.

Die Berechnung des Absorprionskoeffizienten bei den unterschiedlichen Einfallswinkeln erfolgt mittels WinFLAG. Mit diesem Programm läßt sich auch der Absorptionsgrad im diffusen Schallfeld eines Hallraumes bestimmen.

Absorptionskoeffizient 0°; ... 87,5° Inkrement 2,5° WinFlag Simulation

Als "Sonderfall" können Proben betrachtet werden die kleiner als die Bodenfläche des Hallraumes sind. Dort erhöht sich durch Schallfeldbeugung "scheinbar" der Absorptionsgrad der Probe durch eine Schallfeldbeugung an den Probenrändern.

Normierte Luftschallabsorption ist eine auf zum Beispiel 15 mm Nenndicke bezogene Luftschallabsorption einer Probe mit einer Materialdicke zwischen 8 und 24 mm.

Außerhalb dieses Bereiches wird die "Normierung" ungenau. Es ist dann erforderlich zusätzliche Zielwerte für Materialdicken < 8 mm und > 24 mm festzulegen.

Die "Normierung" erfolgt über dickenkorrigierte Terzfrequenzen:

$$f_{normiert} = f_{Terz} * \frac{D_{Probe}}{D_{Nenn}}$$

mit $f_{normiert}$ als "normierte" Frequenz [Hz] f_{Terz} als Tezmittenfrequenz [Hz] D_{Probe} als Probendicke [mm] D_{Nenn} als Bezugs-Nenndicke [mm]

Die Absorptionswerte der Terzmittenfrequenzen werden den gerechneten, "normierten" Frequenzen zugeordnet. Das heißt die Luftschallabsorptionswerte werden auf der Frequenzachse um den Faktor $\frac{D_{Probe}}{D_{Nenn}}$ verschoben.

Beispiel:

Komplette Impedanzrohrmessung Ø 99 mm und Ø 29 mm mit arithmetische Mittelung zwischen 500 und 1600 Hz sowie mit WinFlag Simulation als Ausgansanalyse

Darstellung der Messwerte des Ø 29 mm Rohres bei Terzmittenfrequenzen

Darstellung der Messwerte des Ø 29 mm Rohres bei "normierten" Frequenzen auf 15 mm Dicke. Materialdicke. Man sieht die Verschiebung der Graphen um $\frac{D_{Probe}}{D_{Nenn}}$ auf der Frequenzachse.

Hallraum (α-Kabine) ISO 354

Begriffe:

Abklingkurve: Graphische Darstellung der Abnahme des Schalldruckpegels in einem Raum als Funktion der Zeit nach dem Abschalten der Schallquelle.

Nachhallzeit *T*: Zeit, in Sekunden, die der Schall benötigen würde, um nach dem Abschalten der Schallquelle um 60 dB abzuklingen.

Definierte Nachhallzeiten:

*T*₁₅ Zeit, in Sekunden, die der Schall benötigt, um nach dem Abschalten der Schallquelle um 15 dB abzuklingen.

 T_{20} Zeit, in Sekunden, die der Schall benötigt, um nach dem Abschalten der Schallquelle um 20 dB abzuklingen.

 T_{30} Zeit, in Sekunden, die der Schall benötigt, um nach dem Abschalten der Schallquelle um 30 dB abzuklingen.

 T_{60} Zeit, in Sekunden, die der Schall benötigt, um nach dem Abschalten der Schallquelle um 60 dB abzuklingen.

Messverfahren zur Bestimmung der Nachhallzeiten:

Verfahren mit abgeschaltetem Rauschen

Verfahren, mit dem die Abklingkurven durch direkte Aufzeichnung des abklingenden Schalldruckpegels bestimmt werden, wenn die Anregung eines Raumes mit Breitbandrauschen oder Rauschen mit Bandbegrenzung erfolgt. (ISO 354)

Verfahren mit integrierter Impulsantwort

Verfahren, mit dem die Abklingkurven durch Rückwärtsintegration der quadrierten Impulsantworten bestimmt werden. (ISO 354)

Impulsantwort

als zeitliche Entwicklung des Schalldrucks, der an einem Ort in einem Raum als Ergebnis der Emission eines Dirac-Impulses an einem anderen Ort im Raum beobachtet wird. Anmerkung:

In der Praxis ist es nicht möglich, echte Dirac-Funktionen zu erzeugen und abzustrahlen, aber mit impulsförmigen Geräuschen (z.B. Schüssen) können Näherungen erzeugt werden, die für praktische Messungen ausreichend sind. Ein alternatives Messverfahren besteht darin, eine Periode einer Maximalfolge (MLS-Verfahren: Maximum Length Sequence - pseudo-random binary signal, pseudorandom sequence of pulses) oder eines anderen deterministischen Signals mit linearem Spektrum zu verwenden und die gemessene Antwort in eine Impulsantwort zurück zu transformieren. (ISO 354)

Der Norsonic Analysator 840 verwendet das *Verfahren mit integrierter Impulsantwort* mit MLS-Signal.

Beispiele hierzu als Bildschirmfoto vom RTA 840 blaue Kurve "leer"-Messung mit darüber gelegter Kurve "leer", gerechnet und Rückwärtsintegriert aus den Pegel-Zeit-Messwerten des RTA 840 und Kurve "Probe", gerechnet und Rückwärtsintegriert

Ausgleichsgerade des RTA 840 zur Bestimmung der Nachhallzeit T30

Auf der EXCEL-Grafik können die Nachhallzeiten T_{20} und T_{30} direkt abgelesen werden.

Auf der EXCEL-Grafik können die Nachhallzeiten T_{20} und T_{30} direkt abgelesen werden.

8000 Hz Terz Verlauf der Nachhallzeit

Auf der EXCEL-Grafik können die Nachhallzeiten T_{20} und T_{30} direkt abgelesen werden.

Für die Berechnung der Nachhallzeiten mittels Rückwärtsintegration (Bildung der Rückwärtssumme aus quadrierten Pegeln über der Zeit mit "Normierung" auf Startwert 0 dB) sollten die Pegelwerte im "Rauschbereich" nach Ablauf der Nachhallzeit gelöscht werden wie in den Graphiken oben dargestellt.

Die Werte der Y-Achse lassen sich mit geänderter Rechenoperation "halbieren" und entsprechen dann den "Bildschirmwerten" des NORSONIC-Analysators. Allerdings müssen dann auf der die X-Achse abgelesenen Werte T_{30} und T_{20} der Nachhallzeiten auf T_{60} angepasst werden:

- T₂₀ *3 und /2

weil sich ja die X-Achse nicht ändert.

Die auf dem Bildschirm dargestellten Nachhallzeiten T_{20} und T_{30} entsprechen den auf T_{60} hochgerechneten Nachhallzeiten.

Die X-Achse auf dem Analysator stellt "Perioden" von 8 Millisekunden Dauer dar. Die gerechnete X-Achse auf dem EXCEL-Diagramm stellt die Nachhallzeit in Sekunden dar.

Die Formel der Schroeder'schen Rückwärtsintegration dazu:

$$\langle g^{2}(t) \rangle = \int_{t}^{\infty} [h(t')]^{2} dt' = \int_{0}^{\infty} [h(t')]^{2} dt' - \int_{0}^{t} [h(t')]^{2} dt'$$

Die äquivalente Schallabsorptionsfläche eines Raumes

ist die hypothetische Größe einer vollständig schallabsorbierenden Oberfläche ohne Beugungseffekte (z.B. an den Probenrändern), welche die gleiche Nachhallzeit in einem Raum ergeben würde, als wenn sie das einzig absorbierende Element im Raum wäre.

Anmerkungen:

Die Fläche wird in Quadratmeter gemessen [m²]

Für den leeren Hallraum wird die Fläche mit A_{leer} bezeichnet, für den Hallraum mit eingebrachtem Prüfobjekt mit A_{Probe} .

$$A_{Leer} = 55,3 * V * \frac{1}{c_0 * \sqrt{\frac{t_u}{T_0} + 1}} * (\frac{1}{T_{leer}})$$
$$A_{Probe} = 55,3 * V * \frac{1}{c_0 * \sqrt{\frac{t_u}{T_0} + 1}} * (\frac{1}{T_{Probe}})$$

Die äquivalente Absorptionsfläche des Prüfobjektes A_T ist definiert als Differenz der Schallabsorptionsfläche des Hallraumes mit und ohne Prüfobjekt [m²]

Der Schallabsorptionsgrad \propto_S ist das Verhältnis von äquivalenter Schallabsorptionsfläche eines Prüfobjektes zur Fläche des Prüfobjektes.

Anmerkungen:

Bei beidseitig beschallten Absorbern ist der Schallabsorptionsgrad \propto_S das Verhältnis aus äquivalenter Schallabsorptionsfläche des Prüfobjektes und der Fläche **beider** Seiten des Prüfobjektes.

Der Schallabsorptionskoeffizient, der aus Messungen der Nachhallzeit berechnet wird kann Werte größer als 1,0 erreichen, z.B. durch Streueffekte und/oder Schallfeldbeugung an den Probenrändern. Daher darf der Schallabsorptionsgrad \propto_S nicht in Prozent angegeben werden. Bei der Anwendung des Index "s" wird eine Verwechselung mit dem Schallabsorptionsgrad vermieden, der als Verhältnis von nicht reflektierter zu auftreffender Schallenergie definiert ist, wenn eine ebene Schallwelle auf eine ebene Wand unter einem bestimmten Schalleinfallswinkel auftrifft. Dieser "geometrische" Schallabsorptionsgrad – nach ISO 10 534 – ist nie größer als 1,0 und kann daher in Prozent angegeben werden.

Der Schallabsorptionsgrad \propto_S berechnet aus arithmetisch gemittelten Nachhallzeiten an 6 – 12 Mikrofonpositionen T_{leer} und T_{Probe}

$$\propto_{s} = 55.3 * \frac{V}{A} * \frac{1}{c_{0} * \sqrt{\frac{t_{u}}{T_{0}} + 1}} * (\frac{1}{T_{Probe}} - \frac{1}{T_{leer}}) - 4V (m_{Probe} - m_{leer})$$

mit:

V als Volumen des Hallraumes [m³]

A als Fläche der Probe im Hallraum [m²]

 c_0 als Schallgeschwindigkeit der Luft bei 0°C oder 273,15 K, also 331,5 m/s

 t_u als Umgebungstemperatur [°C]

 T_{leer} und T_{Probe} als Nachhallzeiten [s]

 T_0 als Bezugstemperatur 273,15 K zur Korrektur von c_0 bei Temperaturen \neq 0°C

Die frequenzabhängige Korrektur – $4V (m_{Probe} - m_{leer})$ wird erforderlich wenn sich während der Messreihe die relative Luftfeuchte in der Kabine verändert.

 $m=\alpha/(10*lg(e)) = Eulerzahl 2,7... Tabellenwerk nach ISO 9613-1$

Bei konstanter Luftfeuchte, Temperatur im klimatisierten Labor und Luftdruck während der Messung ist die Differenz ($m_{Probe} - m_{leer}$) = 0

Mithilfe der unten aufgeführten Internetverbindung lassen sich die Korrekturen nach ISO 9613-1 frequenzabhängig bestimmen

http://resource.npl.co.uk/acoustics/techguides/absorption/

Bewertung des Absorptionsgrades nach ISO 11654

Praktischer Absorptionsgrad α_p nach ISO 11654

Ermittlung aus gemessenen Terz-Absorptionsgraden

- Arithmetische Mittelung des Absorptionsgrades aus den drei zur Oktave gehörenden Terzen
- Werte auf 2 Dezimale begrenzen
- Runden auf 0,05

Maximaler Absorptionsgrad α_p ist auf 1 begrenzt

Bewerteter Absorptionsgrad nach ISO 11654

- Anwendung des Bezugskurvenverfahrens
- Verschieben der Bezugskurve in Richtung der Messwerte in Schritten von 0,05
- Maximale Summe der ungünstigen Abweichungen $\leq 0,1$
- Der Wert der verschobene Bezugskurve bei 500 Hz ist α_w

Beispiel: $\alpha_w = 0.8 \Rightarrow$ Schallabsorptionsklasse "B"

Klassifizierung α_w nach ISO 11654

Schallabsorptionsklasse	α_w -Werte
А	0,90; 0,95; 1,00
В	0,80; 0,85
C	0,60; 0,65; 0,70; 0,75
D	0,30; 0,35; 0,40; 0,45; 0,50; 0,55
E	0,15; 0,20; 0,25
Nicht Klassifiziert	0,00; 0,05; 0,10

4. Luftschalldämmung / Luftschallisolation

Schallisolation ist, wenn die unten aufgeführten Fehler vermieden werden, grundsätzlich höher zu bewerten als Luftschallabsorption da durch Isolation eine deutlich höhere Minderung des Schalldruckpegels möglich ist. Jedoch kleinste "Fehlstellen" in der "Tragwand" oder dem aufgesetzten "Feder-Masse-System" reduzieren die Isolationswirkung gewaltig.

Die untersuchten Systeme sind in der Regel Zwei-Massen-Systeme mit einer dazwischenliegenden Feder.

- Diese schwingungsfähigen Systeme besitzen einen "Unterkritischen Bereich" d.h. Amplituden der "Eingangsseite" und "Ausgangsseite" sind gleich hoch.

- Gefolgt von einem "kritischen Bereich", bei dem eine kleine Eingangsamplitude eine große Ausgangsamplitude hervorruft.

- Und einen "überkritischen Bereich" bei dem die Eingangsamplitude mehr oder weniger stark gedämpft wird und somit eine kleinere Ausgangsamplituden erzeugen.

Eine Verdopplung der "Masse" lässt die Schallisolation um 6 dB ansteigen (gilt für Einwandsysteme und Feder-Masse-Systeme).

Man muss allerdings mit zunehmenden Wandstärken mit Koinzidenzeinbrüchen im hörbaren Frequenzbereich rechnen.

Eine Verdopplung der "Federdicke" (weichere Feder = kleinere Federkonstante) bei Feder-Masse-Systemen lässt die Schallisolation um ca. 6 dB ansteigen.

Dadurch lässt sich, genügend Bauraum vorausgesetzt, Gewicht einsparen.

Die Resonanzfrequenz $f = \sqrt{\frac{c}{m}}$ des Systems mit c als Federkonstante [N/mm²] und m als Masse [kg] wird entsprechend kleiner.

Die Isolationswirkung eines Feder-Masse-Systems kann nur dann vollständig wirksam werden, wenn:

- in der "Tragschicht" <u>keine</u> Spalte oder Löcher vorhanden sind. Selbst kleinste nicht abgedeckte Löcher reduzieren die Isolation erheblich (Schlüssellocheffekt).

- die "Tragschicht" vollflächig mit Dämpfungsmaterial und Deckschicht bedeckt ist. Auch hier gilt,
1% Lochanteil in Deckschicht und Dämpfung reduzieren die Wirksamkeit des Feder-Masse-Systems bereits deutlich.

Schalldämmass R basierend auf Schalleistung

$$R = 10 * \lg(\frac{W_{ein}}{W_{durch}})$$

mit W_{ein} als auf die Wand auftreffende, einfallende Schalleistun und W_{durch} als durch die Wand hindurchgehende Schalleistung

Berechenbar nach dem Berger'schen Massegesetz; nur gültig für senkrechten Schalleinfall.

$$R = 20 * \lg\left(\frac{\omega * m^{\prime\prime}}{2 * \varrho_0 * c}\right) - 3 \ dB$$

Mit m" als flächenbezogener Masse der Wand, $\omega = 2 * \pi * f$ als Kreisfrequenz der Schallschwingung und $\varrho_0 * c$ als Kennimpedanz der Luft.

Wirkung des Berger'schen Massegesetzes:

- Anstieg der Schalldämmung um 6 dB pro Oktave

- Anstieg der Schalldämmung um 6 dB je Verdoppelung der flächenbezogenen Masse m"

Die Berechnung des Transmission Loss einwandiger Platten erfolgt nach dieser Gleichung:

$$R = 20 * \lg(m'') + 20 * \lg(f) - 47,2$$

Mit TL als Transmission Loss (Dämmaß) [dB], "m"" als flächenbezogene Masse [kg/m2] und "f" als Frequenz [Hz]

Messungen von Einwand- und Mehrmassen-Systemen erfolgen in

- APAMAT
- Decken- Fensterprüfstand
- LS-Box

Im **APAMAT** wird hauptsächlich Insertion Loss (Einfügedämmung) auf Basis einer bekannten Blechplatte bestimmt. Die Pegeldifferenz aus (Probe + Blech) und (Blech) ergibt bei schallreflektierende Probenoberflächen die Einfügedämmung der Probe.

Im Decken-, Fensterprüfstand nach ISO 140

$$R_I = L_{P1} + 10 * \log\left(\frac{1}{4}\right) - [L_{In} + 10 * \log\left(\frac{S_m}{S}\right)]$$

L_{P1} als mittlerer Schalldruckpegel im Senderaum

$$L_{P1} = 10 * \lg(\frac{1}{n} * \sum_{i=1}^{n} 10(\frac{LEQ_i}{10}))$$

über "n" Messpunkte energetisch gemittelter Schalldruckpegel LEQ

 L_{ln} als über die Messfläche gemittelte Schallintensitätspegel im Empfangsraum

$$L_{ln} = 10 * \lg(\frac{1}{n} * \sum_{i=1}^{n} 10^{\left(-\frac{L_{li}}{10}\right)})$$

über "n" Messpunkte energetisch gemittelte Schallintensität LI

 S_m als gesamter Flächeninhalt der Messfläche(n) S als Flächeninhalt des zu prüfenden Prüfobjekts

 $\frac{S_m}{S}$ ergeben bei gleicher Flächengröße den Wert 1 und damitlg $\left(\frac{S_m}{S}\right) = 0$

Anmerkung: [10*lg(1/4) = -6,0206]

Für Mikrofonpositionen im Hallraum ergeben sich folgende Bedingungen für die Korrektur des Schalldruckpegels im Hallraum:

Mikrofonposition	Der Schalldruckpegels ist höher um:
Im Freifeld mindestens. 1 m vom Lautsprecher oder der Wand entfernt	0 dB
Im Nahfeld ca. 1-2 mm vor der Wand	3 dB
Im Nahfeld ca. 1 mm vor einer Raumkante	6 dB
Im Nahfeld ca. 1 mm vor einer Raumecke	9 dB

In der LS-Box wird die Intensitätsdifferenz aus (Box ohne Probe) und (Box mit Probe) gebildet.

Abschätzungen und Simulationsrechnungen werden in WinFLAG durchgeführt

Die Isolationswirkung unterschiedlich großer und wirksamer Feder-Masse-Systeme (Zweiwand Systeme) lässt sich wie folgt berechnen:

$$TL = 10 * \lg\left(\sum_{i=1}^{n} A_{i}\right) - 10 * \lg\left(\sum_{i=1}^{n} A_{i} * 10^{\left(-\frac{TL_{i}}{10}\right)}\right)$$
$$IL = 10 * \lg\left(\sum_{i=1}^{n} A_{i}\right) - 10 * \lg\left(\sum_{i=1}^{n} A_{i} * 10^{\left(-\frac{IL_{i}}{10}\right)}\right)$$

mit TL als Transmission Loss (Dämmaß) [dB], IL als Insertion Loss (Einfügedämmung) [dB], $(\sum_{i=1}^{n} A_i)$ als Gesamtfläche des Bauteils [m²], $A_i * 10^{\left(-\frac{TL_i}{10}\right)}$ als "Teil Transmission Loss" [dB] und $A_i * 10^{\left(-\frac{TL_i}{10}\right)}$ als "Teil-Insertion Loss" [dB] der "Teil-Fläche" A_i . Gilt natürlich auch in Frequenzspektren für einzelne Terzen oder Oktaven.

Im **Deckenprüfstand** können Einfügedämmung und Dämm-Maß mittels Intensitätsmethode bestimmt werden.

$$L_{Wn} = 10 * \lg(\sum_{i=1}^{n} A_i * 10^{\left(\frac{L_{li}}{10}\right)})$$

Formeln zum Transmission- und Insertion Loss siehe LS-Box

Teppich 900 g/m²

Teppich 1400 g/m²

Teppich 700 g/m² + Schwerfolie 2 kg/m² vorn

Teppich 700 g/m² + Schwerfolie 2 kg/m²

Da die sehr hohe Intensität im Bereich des unbedeckten Rücksitzblechs erhalten bleibt beträgt der Unterschied in der gesamten Schallintensität zwischen dem offenen Teppich 1400 g/m² und dem vollflächig mit Schwerfolie 2 kg/m² belegten Teppich nur 0,2 dB.

Bei verkleidetem Rücksitzblech betrüge die Einfügedämmung ca. 17 dB über 500-6300 Hz gerechnet.

Bauteil	L _I 500 bis 6300 Hz	L _I Differenz zum Blech
Blech	85,2 dB	0 dB
Teppich 900 g/m ²	81,4 dB	-3,8 dB
Teppich 1400 g/m ²	78,7 dB	-6,5 dB
Teppich 700 g/m ² + Schwerfolie 2 kg/m ² vorn	79,6 dB	-5,6 dB
Teppich 700 g/m ² + Schwerfolie 2 kg/m ²	78,5 dB	-6,7 dB

Bewertetes Schalldämmass nach ISO 717-1 (Messungen und deren Ergebnisse nach ISO 140 mit Messgenauigkeit 0,1 dB)

Der "Einzahlwert" Bewertetes Schalldämm-Maß R_w wird wie folgt aus dem Schalldämm-Maß R berechnet:

Um die Ergebnisse von Messungen, durchgeführt nach ISO 140-xx in Terzbändern (oder Oktavbändern), gegeben auf 0,1 dB zu bewerten, wird die zutreffende Bezugskurve in Schritten von 1 dB gegen die Messwertkurve verschoben, bis die Summe der ungünstigen Abweichungen so groß wie möglich wird, jedoch nicht mehr als 32 dB bei Messungen in Terzbändern oder 10 dB bei Messungen in Oktavbändern.

Eine ungünstige Abweichung ist gegeben, wenn das Messergebnis niedriger als der Bezugswert ist. Nur ungünstige Abweichungen werden berücksichtigt.

Formel für Excel Tabellen:

= wenn(versch. Bez. Wert $- R_i < 0$; 0; versch. Bez. Wert $- R_i$)

mit versch. Bez. Wert als Wert der verschobenen Bezugskurve und R_i als Messwert aus Messung nach ISO 140-xx

Tabelle der Bezugswerte für die Luftschalldämmung

Frequenz	Bezugswert		
Hz	dB		
	Terzbänder	Oktavbänder	
100	33		
125	36	36	
160	39		
200	42		
250	45	45	
315	48		
400	51		
500	52	52	
630	53		
800	54		
1000	55	55	
1250	56		
1600	56		
2000	56	56	
2500	56		
3150	56		

Tür KFZ Absorptionsraum 2.2.2009

Objekt aus ISO 717-1 Seite 11

Beispiele hierzu:

F	D '	Bezugswerte	11	F	D'	Bezugswerte	
Frequenz	KI [JD]	verschoben	Ungunstige	Frequenz	RI	verschoben	Ungunstige
[HZ]	[OB]	um 1 dB	Abweichung	[HZ]	[OB]	um -22 dB	Abweichung
20	5,7	#NV	#NV	20	#NV	#NV	#NV
25	13,3	#NV	#NV	25	#NV	#NV	#NV
31,5	15,9	#NV	#NV	31,5	#NV	#NV	#NV
40	19,4	#NV	#NV	40	#NV	#NV	#NV
50	17,4	#NV	#NV	50	18,7	#NV	#NV
63	23,7	#NV	#NV	63	19,2	#NV	#NV
80	24,7	#NV	#NV	80	20	#NV	#NV
100	30,9	34	3,1	100	20,4	11	0
125	35,8	37	1,2	125	16,3	14	0
160	39,1	40	0,9	160	17,7	17	0
200	36,7	43	6,3	200	22,6	20	0
250	39,3	46	6,7	250	22,4	23	0,6
315	40,7	49	8,3	315	22,7	26	3,3
400	48,6	52	3,4	400	24,8	29	4,2
500	50,9	53	2,1	500	26,6	30	3,4
630	55,4	54	0	630	28	31	3
800	58,1	55	0	800	30,5	32	1,5
1000	60,2	56	0	1000	31,8	33	1,2
1250	61	57	0	1250	32,5	34	1,5
1600	60,6	57	0	1600	33,4	34	0,6
2000	59,1	57	0	2000	33	34	1
2500	62,4	57	0	2500	31	34	3
3150	61,8	57	0	3150	25,5	34	8,5
4000	62,8	#NV	#NV	4000	26,8	#NV	#NV
5000	63,1	#NV	#NV	5000	29,2	#NV	#NV
6300	60,2	#NV	#NV	6300	#NV	#NV	#NV
8000	66,3	#NV	#NV	8000	#NV	#NV	#NV
10000	68	#NV	#NV	10000	#NV	#NV	#NV
		Korrektur	Ungünstige			Korrektur	Ungünstige
		wort	Abweichung			wort	Abweichung
		WEIL	max 32 dB			Wert	max 32 dB
		1	32			-22	31,8

Resonanz / Verlustfaktor / Speichermodul

Die Messung erfolgt nach

- nicht mehr gültiger DIN 53426 (Mercedes Benz)

- TL 1933613 (BMW)

Beide beschreiben prinzipiell den gleichen Messaufbau und unterscheiden sich nur in unterschiedlicher Probennahme und im Messzyklus.

Gemessen wird die Übertragungsfunktion einer Schaumschicht zwischen zwei Massen. Anhand der Resonanzfrequenz und der Resonanzbandbreite lassen sich bei bekannter Deckmasse und bekannten Probendaten

- der Verlustfaktor

- der Speichermodul des Schaumsystems bestimmen.

Verlustfaktor:

$$\eta = \frac{\Delta f}{f_0}$$

mit $\Delta f = f_o - f_u$ als Resonanzbandbreite oberhalb und unterhalb der Resonanzfrequenz f_0 bei -3 dB von der Maximalamplitude bei der Resonanzfrequenz oder bei Normierung der Maximalamplitude auf den Wert "1" bei $\frac{1}{\sqrt{2}}$ der Maximalamplitude "1" und f_0 als Resonanzfrequenz

Speichermodul E' [Pa]:

$$E' = m * \omega_0^2 * \frac{h}{A}$$

mit $\omega_0 = 2 * \pi * f_0$ als Kreisfrequenz bei Resonanzfrequenz f_0 [hz] m als Probenmasse + Deckmasse [kg] h als Probendicke [m] A als Probenfläche [m²]

Beispiel:

	Dicke h [m]	Masse m [kg]	Fläche A [m²]	Deckschicht [kg]	f ₀	Δf	Verlustfaktor η	Speichermodul E´ [Pa]
Visco Sch	0,0189	0,00315	0,0025	0,05046	87,3	37,7	0,4318	121.943
VI 14/22	0,022	0,0043	0,0025	0,05046	36,75	8,25	0,2245	25.693
Sch 47	0,03	0,0058	0,0025	0,05046	64,25	16,75	0,2607	110.024

Für die Umrechnung der NORSONIC-Daten

$$L_P = 10 * lg(\frac{p_{(t)}}{p_0})^2 = 20 * lg(\frac{p_{(t)}}{p_0}) \text{ mit } p_{(t)} \text{ als Units aus dem Analysator und } p_0 = 20 \ \mu Pa$$

$$p_{(t)} = p_0 * 10^{(rac{P}{20})}$$
 mit L_p als dB-Wert aus dem Analysator und $p_0 = 20 \ \mu Pa$

Transferfunktion der oben beschriebenen Materialien mit den dazugehörigen Berechnungen von Verlustfaktor und Speichermodul

Die Transferfunktionen aus "dB"-Werten dürfen nicht normiert werden.

Auf "1" normierte Transferfunktionen aus "Volt"-Werten des Messgerätes der oben gemessenen Materialien.

Herleitung der verwendeten "Mathematik"

Physik eines gedämpften Federpendels

Energieerhaltungssatz

Ein Federpendel besteht in seiner einfachsten Form aus einer Schraubenfeder (mit Federkonstante *D*) und einem an der Feder aufgehängten Pendelkörper (Massenstück der Masse *m*). Lenkt man den Pendelkörper gegenüber seiner Gleichgewichtslage nach oben oder unten aus, so beginnt der Pendelkörper auf- und abzuschwingen.

Diese Pendelbewegung soll hier – stark vereinfacht – analysiert werden. Reibungskräfte (innere Reibung der Feder und Luftwiderstand) werden vernachlässigt. Für die Feder wird angenommen, dass das hooke' sche Gesetz (Proportionalität zwischen Kraft und Dehnung der Feder) exakt gilt. Die Feder wird als masselos betrachtet; daher spielen Kräfte, durch die Teile der Feder beschleunigt werden, in der Rechnung keine Rolle. Torsionsschwingungen, wie sie bei einem realen Federpendel auftreten, sollen nicht berücksichtigt werden.

Zur Beschreibung des momentanen Zustands zur Zeit t wird die Elongation y (Auslenkung gegenüber der Gleichgewichtslage) als Koordinate verwendet. y kann sowohl positiv (nämlich oberhalb der Gleichgewichtslage) als auch negativ sein (unterhalb der Gleichgewichtslage). Als Anfangsbedingung wird angenommen, dass zur Zeit t = 0 der Pendelkörper um die Strecke A angehoben ist und losgelassen wird.

Im linken Teil der Skizze ist die unbelastete Feder abgebildet. In der Mitte ist das komplette Federpendel in seiner Gleichgewichtslage zu sehen; hier ist die Feder durch das Gewicht des Pendelkörpers um eine Strecke y_0 gedehnt. Rechts ist ein momentaner Zustand des Federpendels dargestellt, und zwar unter den Voraussetzungen y > 0 und $|y| < y_0$. Die späteren Überlegungen beziehen sich zunächst auf diesen Fall, sind aber auch für andere Werte von y richtig.

Dehnung (Stauchung) der Feder in der Gleichgewichtslage

Die Dehnung der Feder in der Gleichgewichtslage, hervorgerufen durch die Gewichtskraft $F_G = m$ g des Pendelkörpers, ergibt sich aus dem hooke' schen Gesetz:

$$y_0 = \frac{m * g}{D}$$

у о	[m]	Dehnung der Feder in der Gleichgewichtslage
т	[kg]	Masse des Pendelkörpers
g	[m/s²]	Fallbeschleunigung (Ortsfaktor)
D	[N/m]	Federkonstante

Ansatz: Zusammenhang zwischen Rückstellkraft und Elongation

Auf den Pendelkörper wirken zwei Kräfte, nämlich die Federkraft und die Gewichtskraft. Die Federkraft berechnet man wieder mit dem hooke' schen Gesetz als Produkt der Federkonstante *D* und der Dehnung $y_0 - y$. Mit Dehnung ist hier die Längenänderung gegenüber der unbelasteten Feder gemeint. Die Federkraft ist in der gezeichneten Situation nach oben gerichtet und erhält deswegen ein positives Vorzeichen. Die Gewichtskraft *m g* wird dagegen mit einem Minuszeichen versehen, da sie nach unten gerichtet ist.

$$F = D * (y_0 - y) - m * g = D * \left(\frac{m * g}{D} - Y\right) - m * g = m * g - D * y - m * g = -D * y$$

F	[N]	Rückstellkraft
D	[N/m]	Federkonstante

y [m] Elongation

Die Gleichung besagt, dass die auf den Pendelkörper wirkende Kraft (Rückstellkraft) proportional und entgegengesetzt zur Elongation ist. In einem solchen Fall hat man es mit einer *ungedämpften harmonischen Schwingung* zu tun, die durch eine Sinus- oder Cosinusfunktion beschrieben werden kann. Bemerkenswert ist die Tatsache, dass die Gewichtskraft in der Formel nicht vorkommt.

Kreisfrequenz und Schwingungsdauer

Eine harmonische Schwingung ist gekennzeichnet durch die so genannte Kreisfrequenz

$$\omega = \sqrt{\frac{D}{m}}$$

ω [1/s] Kreisfrequenz	: (2*π*f)
-----------------------	-----------

D [N/m] Federkonstante

m [kg] Masse des Pendelkörpers

beziehungsweise die Schwingungsdauer (Periodendauer)

$$T=2\pi\sqrt{\frac{m}{D}}$$

Т	[s]	Schwingungsdauer (Periodendauer)
π		Kreiszahl (3,14159)
D	[N/m]	Federkonstante
т	[kg]	Masse des Pendelkörpers

Elongation (Weg)

Die Elongation y kann nun folgendermaßen als Funktion der Zeit t ausgedrückt werden:

$$y = A * \cos(\omega t) = A * \cos(\sqrt{\frac{D}{m}} * t)$$

Y	[m]	Elongation (Auslenkung gegenüber der Gleichgewichtslage)
Α	[m]	Amplitude (maximaler Absolutbetrag der Elongation)
ω	[1/s]	Kreisfrequenz (2*π*f)
t	[s]	Zeit
D	[N/m]	Federkonstante
т	[kg]	Masse des Pendelkörpers

Dass hier eine Cosinus- und keine Sinusfunktion steht, liegt an der oben festgelegten Anfangsbedingung. Setzt man nämlich t = 0 ein, so erhält man – wie gewünscht – die anfängliche Auslenkung y = A. Eine Begründung der Formel soll erst später durch Nachrechnen erfolgen, und zwar im Abschnitt über die Kraft.

Geschwindigkeit

v sei die (vorzeichenbehaftete) Geschwindigkeitskomponente in senkrechter Richtung. Bei Bewegung nach oben ist *v* positiv, bei Bewegung nach unten negativ. *v* wird berechnet durch Differenzieren (Ableiten) von *y* nach *t*, wobei die Kettenregel zu berücksichtigen ist ("Nachdifferenzieren"!).

$$v = -A * \sin(\omega t) = -A * \sqrt{\frac{D}{m}} * \sin(\sqrt{\frac{D}{m}} * t)$$

- v [m/s] Geschwindigkeit
- A [m] Amplitude
- ω [1/s] Kreisfrequenz (2*π*f)
- t [s] Zeit
- D [N/m] Federkonstante
- *m* [kg] Masse des Pendelkörpers

Erneutes Einsetzen von t = 0 ergibt v = 0 und bestätigt so, dass die Anfangsbedingung auch hinsichtlich der Geschwindigkeit erfüllt ist: Der Pendelkörper ist beim Loslassen unbewegt.

Beschleunigung

Differenziert man ein zweites Mal nach *t*, so erhält man die Beschleunigung *a*. Auch diese Größe wird hier – entsprechend wie die Geschwindigkeit – mit Vorzeichen verwendet.

$$a = -A * \omega^{2} * \cos(\omega t) = -A * \frac{D}{m} * \cos(\sqrt{\frac{D}{m}} * t)$$

[m/s²]	Beschleunigung
[m]	Amplitude
[1/s]	Kreisfrequenz (2*π*f)
[s]	Zeit
[N/m]	Federkonstante
[kg]	Masse des Pendelkörpers
	[m/s²] [m] [1/s] [s] [N/m] [kg]

Rückstellkraft

Die Rückstellkraft auf den Pendelkörper ergibt sich nach dem newton' schen Kraftgesetz (2. Newton-Axiom) als Produkt von Masse und Beschleunigung.

$$F = -m * A * \cos(\omega t) = -A * \cos(\sqrt{\frac{D}{m}} * t)$$

F	[N]	Rückstellkraft
т	[kg]	Masse des Pendelkörpers
Α	[m]	Amplitude
ω	[1/s]	Kreisfrequenz (2*π*f)
t	[s]	Zeit
D	[N/m]	Federkonstante

Vergleicht man die Rechenausdrücke für die Kraft *F* und die Elongation *y*, so stellt man fest, dass sie sich nur durch ein Minuszeichen und den Faktor *D* unterscheiden. Es gilt also – in Übereinstimmung mit unserem Ansatz:

$$F = -D * y$$

F	[N]	Rückstellkraft
D	[N/m]	Federkonstante
Y	[m]	Elongation

Damit ist die bisher fehlende Begründung der Elongationsformel nachgeholt.

Kinetische Energie

Die kinetische Energie (Bewegungsenergie) des Pendelkörpers ergibt sich durch Einsetzen in die bekannte Formel (halbe Masse mal Quadrat der Geschwindigkeit).

$$E_{k} = \frac{m}{2} * v^{2} = \frac{m}{2} * (-A * \omega * \sin(\omega t))^{2} = \frac{m}{2} * A^{2} * \omega^{2} * sin^{2}(\omega t)$$
$$= \frac{D}{2} * A^{2} * \sin(\sqrt{\frac{D}{m}} * t)$$

E _k	[Nm]	kinetische Energie (Bewegungsenergie)
т	[kg]	Masse des Pendelkörpers
Α	[m]	Amplitude
ω	[1/s]	Kreisfrequenz (2*π*f)
t	[s]	Zeit
D	[N/m]	Federkonstante

Potentielle Energie

Hinsichtlich der potentiellen Energie (Lageenergie) eines Federpendels herrscht oft Verwirrung. Das liegt daran, dass hier zwei verschiedene Arten potentieller Energie beteiligt sind, nämlich Federenergie und Höhenenergie. Außerdem ist zu beachten, dass die potentielle Energie erst nach Festlegung eines Bezugspunktes, an dem die potentielle Energie den Wert 0 hat, eindeutig bestimmt ist. Hier wird naheliegend vereinbart, dass die beiden genannten Arten potentieller Energie in der Gleichgewichtslage gleich 0 sein sollen.

Für die Federenergie erhält man:

$$E_{p1} = \frac{D}{2} * (y_0 - y)^2 - \frac{D}{2} * y_0^2 = \frac{D}{2} * (y_0^2 - 2y_0y + y^2 - y_0^2) = -Dy_0y + \frac{D}{2}y^2$$

Der Minuend dieser Differenz ergibt sich aus der bekannten Formel für die Federenergie (halbe Federkonstante mal Quadrat der Dehnung). $y_0 - y$ ist hier wieder die Dehnung im Vergleich zur unbelasteten Feder. Der Subtrahend ist notwendig, damit für y = 0 der Wert 0 herauskommt.

Einfacher ist der Rechenausdruck für die Höhenenergie:

$$E_{p2} = m * g * y$$

Zur Berechnung der gesamten potentiellen Energie braucht man nur noch E_{p1} und E_{p2} zu addieren, und zwar unter Berücksichtigung der Formel für y₀.

$$E_p = -Dy_0y + \frac{D}{2}y^2 + m * g * y = -D * \frac{m * g}{D} * y + \frac{D}{2} * y^2 + m * g * y = \frac{D}{2} * y^2$$

Hier fällt auf, dass – ähnlich wie beim Zusammenhang zwischen Rückstellkraft und Elongation – die Höhenenergie nicht mehr vorkommt. Betrachtet man y als Dehnung (im Vergleich zur Federlänge in der Gleichgewichtslage) und nicht wie bisher $y_0 - y$ (Dehnung im Vergleich zur Länge der unbelasteten Feder), so kann man die gesamte potentielle Energie als Federenergie auffassen.

Die gesamte potentielle Energie lässt sich entsprechend wie die kinetische Energie ausdrücken:

$$\boldsymbol{E}_{\boldsymbol{p}} = \frac{D}{2} * A^2 * \cos^2\left(\sqrt{\frac{D}{m}} * t\right) = \frac{\boldsymbol{m}}{2} * A^2 * \boldsymbol{\omega}^2 * \cos^2(\boldsymbol{\omega} t)$$

Ep	[Nm]	potentielle Energie (Bewegungsenergie)
т	[kg]	Masse des Pendelkörpers
Α	[m]	Amplitude
ω	[1/s]	Kreisfrequenz (2*π*f)
t	[s]	Zeit
D	[N/m]	Federkonstante

Gesamtenergie

Durch Addition von kinetischer und potentieller Energie erhält man die Gesamtenergie. Die Vereinfachung des entsprechenden Terms erfolgt durch Ausklammern der gemeinsamen Faktoren und Anwendung des "trigonometrischen Pythagoras".

Mit

$$E = E_k + E_p$$

und

$$\sin^2(\omega t) + \cos^2(\omega t) = 1$$

folgt für die gesamte Energie

$$E = \frac{m}{2}A^2 * \omega^2$$

Es stellt sich heraus, dass die Gesamtenergie nicht von der Zeit *t* abhängt. Der Energieerhaltungssatz ist also erfüllt.

$$E = \frac{m}{2}A^{2} * \omega^{2} = \frac{D}{2} * A^{2} => m * \omega^{2} = D => \omega = \sqrt{\frac{D}{m}}$$

- *E* [Nm] gesamte Energie (Bewegungsenergie)
- *m* [kg] Masse des Pendelkörpers
- A [m] Amplitude
- ω [1/s] Kreisfrequenz (2*π*f)
- D [N/m] Federkonstante

q.e.d.

Aus Dubbel Auflage 20 2001; ISBN 3-540-67777-1; Festigkeitslehre: Abschnitt 2.2.1 Zug-Druckstäbe Seite G52

$$D = E * \frac{A}{l}$$

 $m * \omega^2 = D$

mit

m		
D	[N/m]	Federkonstante
Ε	[N/mm²]	Elastizitätsmodul (Speichermodul)
Α	[m²]	Stabquerschnitt (Probenfläche)
Ι	[m]	Stablänge (Probendicke)
und		

mit		
т	[kg]	Masse des Pendelkörpers
ω	[1/s]	Kreisfrequenz (2*π*f)
D	[N/m]	Federkonstante

folgt nach Einsetzen von "D" in die Festigkeitsgleichung

$$m * \omega^2 = E * \frac{A}{l}$$

nach Umformung

$$E = m * \omega^2 * \frac{l}{A}$$

Ε	[N/mm²]	Speichermodul
m	[kg]	Masse der Deckschicht + Probenmasse
ω ₀	[1/s]	Resonanzfrequenz (2*π*f ₀)
Α	[m²]	Probenfläche
1	[m]	Probendicke

für den Schwingversuch nach BMW-TL 193363

Der Verlustfaktor

$$\eta = \frac{\omega_o - \omega_u}{\omega_0} = \frac{f_o - f_u}{f_0}$$

wird unter Mathematik und **"3_tsl_one-mass_damped.pdf**" ausführlich beschrieben. Gefunden bei HAW-Hamburg (Hochschule für Angewandte Wissenschaften), TSL Ihlenburg Thema **"Freie gedämpfte Schwingungen**" Viskose Dämpfung

A=a*b

Hier nur eine kurze Herleitung

5. Intensität / Schalleistung für die "Weiße Industrie"

Messung der Schallleistung mit Abtast-Methode nach ISO 9614 bei stationären Betriebszuständen

$$LW = 10 * \lg(\sum_{i=1}^{n} (A_i * 10^{\left(\frac{LI_i}{10}\right)}))$$

mit A_i als Teilfläche i LI_i als Intensitätspegel der Teilfläche i

Die Intensitätsmessung dient zur Bestimmung der Schallleistung an Geräten der Weißen Industrie über einem Prüfwürfel mit 1,4 m Seitenlänge. Die Prüffläche beträgt 5 * 2 m² also 10 m²

Die Analyse wird von 5 Seiten "vorn", "rechts", "hinten", "links", "oben" durchgeführt und energetisch gemittelt. Die Simulation aus Materialdaten kann hilfreich sein.

Schallleistung aller 5 Flächen und Gesamtschallleistung im Anlieferungszustand

Schallleistung aller 5 Flächen und Gesamtschallleistung mit Absorptionspaket

6. Kraftfahrzeugakustik

Drehzahlbezogene Analysen sind

- Schalldruckpegel im Fahrzustand "Beschleunigung" und "Schub" linear, "A" oder "B"-gewichtet

- Motorordnung im Fahrzustand "Beschleunigung" und "Schub" linear, "A" oder "B"-gewichtet

- Artikulationsindex im Fahrzustand "Standard" und "Modifiziert"

Der Drehzahlbereich ist in der Regel von ca. 1000 1/min bis 4500 1/min für Dieselmotoren und 6000 1/min für Benzinmotoren; Beschleunigung unter Volllast oder langsam beschleunigt und Schub ohne Kraftstoffzufuhr.

Drehzahl 2. Ordi-Filter 4. Ordi-Filte				0	Ordnungsfilter ü	ber der Moto	rdrehzahl zur I	Berechnung d	er Ordnungsp	egel aus Terzso	halldruck	pegeln				
[1/m] Terz [Hz] [Hz] Terz [Hz] Terz [Hz] <td>Drehzahl</td> <td>2. Ord'-Filter</td> <td>2. Ord'-Freq</td> <td>4. Ord'-Filter</td> <td>4. Ord'-Freq</td> <td>Drehzahl</td> <td>2. Ord'-Filter</td> <td>2. Ord'-Freq</td> <td>4. Ord'-Filter</td> <td>4. Ord'-Freq</td> <td>Drehz</td> <td>ahl</td> <td>2. Ord'-Filter</td> <td>2. Ord'-Freq</td> <td>4. Ord'-Filter</td> <td>4. Ord'-Freq</td>	Drehzahl	2. Ord'-Filter	2. Ord'-Freq	4. Ord'-Filter	4. Ord'-Freq	Drehzahl	2. Ord'-Filter	2. Ord'-Freq	4. Ord'-Filter	4. Ord'-Freq	Drehz	ahl	2. Ord'-Filter	2. Ord'-Freq	4. Ord'-Filter	4. Ord'-Freq
1000 31.5 33.3 63 66,7 1050 31.544 35.0 63.480 70,0 103.3 4400 125.110 143.3 135.226,7 207.315 293.3 1100 440 35.0 63.480 70,7 200 100 93,3 200 160,7 200.133.3 4400 125.100 145.0 15.0 440.0 80.0 75.0 80.100 95,7 200.100 95,7 200.100 15.0 40.0 15.0 41.5 31.5 30.5 30.5 100 100,7 200.20 203.3 4600 15.0 15.0 31.5	[1/min]	Terz [Hz]	[Hz]	Terz [Hz]	[Hz]	[1/min]	Terz [Hz]	[Hz]	Terz [Hz]	[Hz]	[1/m	in]	Terz [Hz]	[Hz]	Terz [Hz]	[Hz]
1050 31.5+40 35,0 63+80 70,0 1100 40 89,0 03-80 76,7 1200 40 40,0 80 80,0 76,7 1200 40 41,7 80 83,3 300 100,0 200 193,0 1300 40-4 43,3 80+100 86,7 200 193,0 200 193,0 1330 40-50 45,0 80+100 80,3 300 100 100,0 200 200,0 1500 50 45,0 80+100 93,3 200 100 103,0 200 200,0 450 160 151,7 315 313,3 1500 50 50,0 100 100,3 300 100,125 110,0 200+250 210,0 450 160 161,7 315 333,3 1500 50 51,7 100 103,3 200+250 223,3 250 160 160,15,3 315 326,7 1500 50+63 55,7 100+125 113,0 200+250	1000	31,5	33,3	63	66,7	2750	80+100	91,7	160+200	183,3	440	0	125+160	146,7	250+315	293,3
1100 40 96// 95/80 75/8 1150 400 83.8 80 76.7 1200 40 40,0 80 80.0 1200 40 40,17 80 83.3 80 76.7 1200 40 41,7 80 83.3 80-100 80.7 1300 40 43.3 80-100 80,7 30.0 100 100,7 200 203.7 1350 40-50 45,0 80-100 93,3 30.0 100 101,7 200 203.7 1400 50 46,7 100 93,3 30.0 100 103,3 200 200.7 450 160 155,0 31.5 31.6,7 1500 50 50,7 100 103,3 200-20 200 21.0 480 160 161,7 31.5 32.3 1500 50,6 53.3 100 105,7 33.0 100+125 113,0 200-250 22.0 480 160 165,0 31.5 33.0 20.7	1050	31.5+40	35,0	63+80	70,0	2800	100	93,3	200	186,7	445	0	125+160	148,3	315	296,7
1150 40 38.3 80 76.7 2900 100 96.7 200 193.3 4650 150. 151.7 313 303.3 1200 40 41.7 80 83.3 300 100.0 200.0 200.0 196.7 1300 40.0 43.3 80.400 86.7 3000 100.0 100.0 200.0 203.3 1300 40.67 100 93.3 3000 100.0 103.3 200.0 203.1 1450 50 46.7 100 93.3 3100 100.0 105.0 200.0 213.2 1500 50 51.7 100 103.3 3200 100.0 200.2 220.0 4800 160 161.7 315 323.0 1500 50.5 55.7 100.125 113.3 3300 100.125 113.0 200.2 220.0 4800 160 161.7 315 330.0 1700 50.63 56.7 106.125 113.3 3300 100.125 115.0 200.2 220.0	1100	40	36,7	63+80	/3,3	2850	100	95,0	200	190,0	450	0	160	150,0	315	300,0
1200 40 40,0 80 80,0 1250 40 41,7 80 83.3 1300 40 43.3 80+100 80,7 1300 40.50 45,0 80+100 90,0 1350 40,50 46,7 100 93,3 3000 100 100,7 200 203,3 1450 50 46,7 100 93,3 3100 100,7 200 210,4 1450 50 46,7 100 103,3 3100 100,7 200 210,4 1550 50 50,7 100 100,7 200 210,7 4850 160 161,7 315 323,0 1550 50,63 55,7 100,125 110,7 200+550 223,3 5000 160 166,7 315 333,3 1360 63 61,7 125 113,3 355 126,7 350 100+125 115,0 200+50 223,7 5	1150	40	38,3	80	76,7	2900	100	96,7	200	193,3	455	0	160	151,7	315	303,3
1250 40 41,7 80 83,3 3000 100,0 200,0 200,0 4650 150,0 315 310,0 1330 40:50 45,0 80:100 90,0 100,0 100,0 200,0 200,0 200,0 200,0 200,0 4550 160 155,0 315 310,0 1450 50 45,0 100 90,0 103,3 200 200,0 210,0 4550 160 158,3 315 315,0 333,3 1500 50 51,7 100 103,3 300 1000:125 110,0 200+250 223,3 4950 160 163,3 315 336,7 1500 50,6 55,7 100:125 113,0 200+250 223,0 4950 160 166,7 315 333,3 1700 50-63 56,7 100:125 113,0 200+250 223,0 5100 160 160,7 315 333,3 1800 63 <td>1200</td> <td>40</td> <td>40,0</td> <td>80</td> <td>80,0</td> <td>2950</td> <td>100</td> <td>98,3</td> <td>200</td> <td>196,7</td> <td>460</td> <td>0</td> <td>160</td> <td>153,3</td> <td>315</td> <td>306,7</td>	1200	40	40,0	80	80,0	2950	100	98,3	200	196,7	460	0	160	153,3	315	306,7
1300 40 43.3 80+100 86,7 1350 40+50 45,0 80+100 90,0 1350 40+50 45,7 100 93,3 1450 50 46,7 100 93,3 100 105,0 200,2 210,0 1500 50 50,0 100 100,0 105,0 200 213,3 1500 50 51,7 100 100,0 105,1 200,2 216,7 1500 50 51,7 100 103,3 200 200,+250 220,0 4850 160 165,7 315 330,0 1600 50 53,3 100 106,7 3300 100+125 110,7 200,250 220,3 4950 160 165,0 315 330,0 1700 50+63 55,7 100+125 113,3 3450 100+125 115,0 200,250 230,3 550 160 166,1 315 333,0 1850 63 61,7 125 123,3 350 100+125 115,7 2	1250	40	41,7	80	83,3	3000	100	100,0	200	200,0	465	0	160	155,0	315	310,0
1350 40+50 45,0 80+100 90,0 130 100 103,3 200 266,7 4750 160 158,3 315 316,7 1450 50 46,7 100 93,3 100 100,100 105,0 200 213,3 4800 160 160,0 135 323,3 1500 50 51,7 100 100,7 200 213,3 4850 160 161,7 315 323,3 1600 55,7 100 105,7 100 100,7 200,450 220,0 250,0 160 165,0 315 330,0 330,0 330,0 330,0 100+125 111,7 200+250 223,3 500 160 166,7 315 330,0 330,0 330,0 330,0 350,0 100+125 111,7 200+250 223,0 500 160 166,7 315 330,0 330,0 330,0 350,0 160 160,16,7 315 330,0 350,0 160 160,16,0 160,16,0 315,40 36,7 350,0 160,0 160,16,0	1300	40	43,3	80+100	86,7	3050	100	101,7	200	203,3	470	0	160	156,7	315	313,3
1400 50 46,7 100 93,3 3150 100 105,0 200 210,3 1450 50 48,3 100 96,7 3200 100 105,0 200 213,3 1500 50 50,0 100 100,3 3200 100 105,7 200 213,3 1550 50 51,7 100 103,3 3200 100+125 111,0 200+250 223,3 1660 50,6 55,7 100+125 113,3 3450 100+125 113,3 200+250 223,3 1700 50+63 55,7 100+125 113,3 3450 100+125 115,7 250 233,3 1800 63 61,7 125 123,3 3450 100+125 113,3 250 236,7 1800 63 64,7 125 123,3 3450 100+125 113,3 250 236,7 1900 63 65,7 125 133,3 350 125 127 233,3 250 260 150 150 <td>1350</td> <td>40+50</td> <td>45,0</td> <td>80+100</td> <td>90,0</td> <td>3100</td> <td>100</td> <td>103,3</td> <td>200</td> <td>206,7</td> <td>475</td> <td>0</td> <td>160</td> <td>158,3</td> <td>315</td> <td>316,7</td>	1350	40+50	45,0	80+100	90,0	3100	100	103,3	200	206,7	475	0	160	158,3	315	316,7
1450 50 48,3 100 96,7 3200 100 106,7 200 213,3 4850 160 16,7 315 323,3 1500 50 51,7 100 100,0 3250 100+125 110,0 200+250 220,0 4850 160 16,7 315 330,0 1600 50 53,3 100 106,7 3300 100+125 110,0 200+250 220,0 4900 160 165,0 315 330,0 1600 50,6 56,7 100+125 113,3 3400 100+125 115,0 200+250 223,0 500 160 166,7 315 333,0 1700 50+63 56,7 100+125 115,0 200+250 230,0 1510 160+200 171,7 315+400 340,7 1800 63 61,7 125 123,3 3600 125 12,0 230,0 160+200 171,7 315+400 340,7 1900 63 65,7 125 133,0 100+125 12,7 250	1400	50	46,7	100	93,3	3150	100	105,0	200	210,0	480	0	160	160,0	315	320,0
1500 500 500 500 500 517 100 1033 3300 100+125 110,0 200+250 220,7 4900 160 163,3 315 326,7 1550 50 53.3 100 106,7 3300 100+125 111,7 200+250 223,3 500 160 165,7 315.4 333,3 1650 56,6 100+125 113,3 3400 100+125 113,7 200+250 223,3 500 160 166,7 315.4 333,3 1700 50+63 56,7 100+125 113,3 3450 100+125 115,0 200+250 230,0 510 160 160,7 315.400 343,3 1800 63 61,7 125 123,3 350 100+125 113,3 200+250 230,0 510 160 160,7 315.400 343,3 1900 63 63,3 125 126,7 250 250 250 160+200 17,7 315.4400 343,3 1950 63 66,7 125	1450	50	48,3	100	96,7	3200	100	106,7	200	213,3	485	0	160	161,7	315	323,3
1550 50 51,7 100 103,3 3300 100+125 110,0 200+250 220,0 4950 160 165,0 315 333,0 1600 50 (63) 55,0 100+125 111,3 200+250 223,0 4950 160 165,0 315 333,0 1600 50 (63) 55,0 100+125 111,3 200+250 223,7 500 160 165,0 315 333,0 1700 50+63 55,7 100+125 111,3 200+250 223,0 500 160 160,0 315,400 330,0 1800 63 66,0 125 110,0 200+125 115,0 200+250 230,0 510 160+200 171,7 315,400 340,0 1800 63 65,0 125 123,0 250 125,10 125,10 133,3 315,4400 383,0 2050 63,480 70,7 125,4100 136,7 350,0 125 125,0 250,7 550 160+200 176,7 315,4400 383,3 2050 </td <td>1500</td> <td>50</td> <td>50,0</td> <td>100</td> <td>100,0</td> <td>3250</td> <td>100+125</td> <td>108,3</td> <td>200+250</td> <td>216,7</td> <td>490</td> <td>0</td> <td>160</td> <td>163,3</td> <td>315</td> <td>326,7</td>	1500	50	50,0	100	100,0	3250	100+125	108,3	200+250	216,7	490	0	160	163,3	315	326,7
1600 50 53.3 100 106,7 3330 100+125 11.7 200+250 223.3 5000 160 166,7 315 333.3 1700 50+63 55,7 100+125 113.0 100+125 115.0 200+250 223.0 500 160 166,7 315 333.3 1700 50+63 55,7 100+125 115,0 200+250 223.0 500 160 160,7 315.400 333.0 1800 63 60,7 125 123.3 3500 100+125 115,7 250 230.0 150 160 160,7 135.400 330.0 1950 63 65,7 125 123.3 3600 125 123.7 250 240.0 530 160-200 177,7 315.400 363.7 2050 63 46,7 125 133,7 3700 125 125,7 250 263,3 160-200 176,7 315.400 360,7 2100 63 +80 70,7 125 +160 136,7 250 125,1 130,0 250	1550	50	51,7	100	103,3	3300	100+125	110,0	200+250	220,0	495	0	160	165,0	315	330,0
1650 50:03 55,0 100:125 113,3 200:820 226,7 50:03 160 130,4 336,7 1700 50:63 55,7 100:125 113,3 3450 100:125 115,0 200:750 230,3 1800 63 60,0 125 120,0 350 100:125 116,7 250 233,3 5100 160 170,0 315:400 333,3 1850 63 61,7 125 123,3 3600 125 120,0 250 240,0 510 160-170,0 135:400 336,7 3900 63 65,0 125 120,0 250 240,0 510 160-200 17,7 315:400 36,7 2000 63 66,7 125 130,0 125 120,0 250 240,7 550 160-200 17,7 315:400 36,7 2000 63 66,3 125:4160 136,7 350 125 126,7 250 <	1600	50	53,3	100	106,7	3350	100+125	111,7	200+250	223,3	500	0	160	166,7	315	333,3
1700 50-63 56,7 100-125 113,0 200-250 230.0 5100 160 170,0 315-400 343.0 1750 50-63 56,3 125 116,7 3500 100-125 115,7 250 233.0 500 160 170,0 315-400 343.0 1850 53 61,7 125 123.3 3500 125 113,3 250 240,7 5200 160-200 177,8 315-400 340,0 1950 63 65,0 125 130,0 125 123,7 250 240,7 530 160-200 177,7 315-400 353,3 2050 63+80 66,7 125 133,3 3750 125 125,7 250 251,7 550 160-200 181,400 363,3 2150 63+80 71,7 125+160 146,7 3800 125 131,7 250+315 260,7 550 160+200 185,0 315+400 363,7 <	1650	50+63	55,0	100:125	110,0	3400	100:125	113,3	200+250	226,7	505	0	160	168,3	315+400	336,7
1750 50+63 58,3 125 116,7 250 233,3 5150 160-200 17,7 315-400 343,3 1800 63 60,0 125 120,0 3550 125 118,3 250 260,7 520 160-200 17,7 315-400 363,0 363,0 350,0 350,0 125 123,3 250 240,0 550 160-200 176,0 315-400 350,0 350,0 350,0 125 123,3 250 240,1 530 160-200 176,0 315-400 350,0 350,0 350,0 125 123,3 250 240,7 530 160-200 176,3 315-400 363,0 365,7 2050 65-80 66,3 125+160 136,7 375,0 125 125,0 250,0 250,0 160-200 180,0 315+400 363,0 2150 65-80 70,7 125+160 143,3 390,0 125 123,3 250,0 250,0 160-200 183,3 315+400 363,0 366,7 2250 80 75,7 <td>1700</td> <td>50+63</td> <td>56,7</td> <td>100+125</td> <td>113,3</td> <td>3450</td> <td>100+125</td> <td>115,0</td> <td>200+250</td> <td>230,0</td> <td>510</td> <td>0</td> <td>160</td> <td>170,0</td> <td>315+400</td> <td>340,0</td>	1700	50+63	56,7	100+125	113,3	3450	100+125	115,0	200+250	230,0	510	0	160	170,0	315+400	340,0
1800 63 60,0 125 120,0 350 125 113,3 250 236,7 5200 160-200 173,3 315-400 366,7 1950 63 61,7 125 123,3 3600 125 120,0 220 240,0 520 160-200 173,3 315-400 366,7 1950 63 65,0 125 130,0 3700 125 123,3 250 243,7 530 160-200 175,7 315+400 353,3 2050 63+80 66,3 125+160 136,7 3750 125 123,7 250 250,1 5400 160+200 187,400 363,0 2150 63+80 71,7 125+160 143,3 3800 125 123,7 250,2 253,3 5500 160+200 188,0 315+400 366,7 2250 63+80 73,3 160,7 140,3 3850 125 131,7 250,15 260,7 550 160+200 <td>1750</td> <td>50+63</td> <td>58,3</td> <td>125</td> <td>116,7</td> <td>3500</td> <td>100+125</td> <td>116,7</td> <td>250</td> <td>233,3</td> <td>515</td> <td>0</td> <td>160+200</td> <td>171,7</td> <td>315+400</td> <td>343,3</td>	1750	50+63	58,3	125	116,7	3500	100+125	116,7	250	233,3	515	0	160+200	171,7	315+400	343,3
1850 63 61,7 125 123,3 3600 125 120,0 250 240,0 520 160-200 175,0 315-400 330,0 1990 63 65,3 125 126,7 3650 125 121,7 220 243,0 550 160-200 175,0 315-400 330,0 2000 63 66,7 125 133,3 3700 125 123,0 250 260,0 180,0 181,400 363,0 2000 63-80 70,0 125+160 136,7 3850 125 126,7 250 253,0 160+200 181,7 315+400 363,3 2100 63+80 70,0 125+160 143,3 3900 125 126,7 250 250,1 160+200 181,7 315+400 363,3 2150 63+80 75,0 160 143,3 3900 125 133,3 250+315 250,1 160+200 188,7 315+400 373,3	1800	63	60,0	125	120,0	3550	125	118,3	250	236,7	520	0	160+200	173,3	315+400	346,7
1900 63 63,3 125 126,7 125 12,7 250 24,3 530 160-200 17,6,7 315.400 353,3 1950 63 65,0 125 130,0 3700 125 123,3 250 24,7 250 24,3 530 160-200 17,6,7 315.400 353,3 2050 63+80 76,7 125 133,3 3700 125 125,0 250,0 250,0 5400 160-200 180,0 315.400 360,0 2150 63+80 70,7 125+160 140,0 125 123,0 250 26,7 550 160-200 181,3 315.400 360,7 2250 80 75,0 160 165,7 3950 125 133,7 250,15 26,37 550 160-200 188,3 315.400 373,3 2250 80 76,7 160 155,7 4050 125+160 135,0 250,15 270,0 570	1850	63	61,7	125	123,3	3600	125	120,0	250	240,0	525	0	160+200	175,0	315+400	350,0
1950 63 65,0 125 130,0 125 123,3 3700 125 123,3 2500 246,7 5350 160+200 178,3 315+400 366,7 2000 63+80 66,7 125 133,3 3750 125 125,0 250 250,0 530 160+200 187,3 315+400 366,7 2100 63+80 70,0 125+160 140,0 3850 125 126,7 250 250,0 550 160+200 181,7 315+400 366,7 2100 63+80 71,7 125+160 143,3 3900 125 130,0 250 260,0 550 160+200 183,3 315+400 366,7 2250 80 75,0 160 150,0 125 133,3 250+315 263,7 550 160+200 188,3 316,400 370,0 2250 80 76,7 160 155,7 150,133,3 125+160 138,7 250+315	1900	63	63,3	125	126,7	3650	125	121,7	250	243,3	530	0	160+200	176,7	315+400	353,3
200 63 66,7 125 133,3 3750 125 125,0 2500 5400 160-200 180,0 315+400 360,0 2050 65+80 70,0 125+160 136,7 3800 125 125,7 250 253,0 5500 160-200 181,9 385,0 365,7 2150 65+80 71,7 125+160 143,3 3900 125 123,0 250,0 256,0 156,0 160,0 185,400 373,3 2250 63+80 75,0 160 160,0 125 133,7 250,415 263,7 560 160,00 185,7 373,3 2250 80 76,7 160 150,0 125+160 135,0 250+15 270,7 570 200 185,7 314,400 373,3 2400 80 80,0 160,0 155,7 4000 125+160 136,7 270,15 273,3 570 200 190,0 400 380,0	1950	63	65,0	125	130,0	3700	125	123,3	250	246,7	535	0	160+200	178,3	315+400	356,7
2050 63-80 68,3 125+160 136,7 3800 125 126,7 250 253,3 5450 160-200 181,7 315+400 363,3 2100 63+80 70,0 125+160 140,0 3850 125 123,0 250 2600 5550 160-200 181,7 315+400 367,0 2200 63+80 71,3 125+160 146,7 3950 125 131,7 250+315 260,7 5550 160+200 185,0 315+400 367,0 2250 80 75,0 160 150,0 125 133,3 250+315 263,3 560 160+200 185,0 315+400 367,0 2350 80 76,7 160 155,7 1400 125+160 135,7 250+315 270,0 5700 200 180,3 400 383,3 2450 80 81,7 150 163,3 4200 125+160 138,3 250+315 273,0 580	2000	63	66,7	125	133,3	3750	125	125,0	250	250,0	540	0	160+200	180,0	315+400	360,0
2100 63+80 70,0 125+160 140,0 3850 125 123,3 250 256,7 5500 160-200 183,3 315+400 366,7 2150 65+80 71,7 125+160 143,3 3900 125 130,0 250 260,0 560 160+200 183,3 315+400 376,7 2250 800 75,0 160 150,0 4000 125 133,3 25415 263,7 5600 160+200 186,7 315+400 373,3 2350 80 76,7 160 155,7 4000 125+160 135,0 250+315 270,0 5700 200 186,7 315+400 373,3 2400 80 80,0 160 156,7 4000 125+160 136,3 250+315 270,7 5700 200 190,0 400 380,0 2500 80 81,7 160 163,3 4200 125+160 138,3 250+315 280,0 58	2050	63+80	68,3	125+160	136,7	3800	125	126,7	250	253,3	545	0	160+200	181,7	315+400	363,3
2150 63+80 71,7 125+160 143,3 3900 125 130,0 2500 2600 5550 160+200 185,0 315+400 373,00 2200 63+80 75,0 160 150,0 125 133,2 250+15 260 5550 160+200 185,0 315+400 373,0 2250 80 75,0 160 150,3 4000 125 133,3 250+315 260,7 560 160+200 185,0 315+400 373,3 2350 80 76,7 160 155,7 100 125+160 136,7 250+315 270,7 570 200 191,0 400 380,3 2450 80 81,7 160 163,3 4200 125+160 136,7 250+315 273,7 5800 200 193,3 400 380,7 2500 80 85,0 160 163,3 4200 125+160 143,3 250+315 276,7 5800 200	2100	63+80	70,0	125+160	140,0	3850	125	128,3	250	256,7	550	0	160+200	183,3	315+400	366,7
2200 63+80 73.3 125+160 146.7 3950 125 13.7 250-135 263.3 5600 160-200 186.7 315+400 373.3 2250 80 75,0 160 150,0 4000 125 133.3 250+315 263.7 5600 160-200 186.7 315+400 373.3 2300 80 76,7 160 155,7 4000 125+160 135,0 250+315 273.3 5700 200 186,7 300.0 380.0 2450 80 80,7 160 166,7 125+160 138,3 250+315 273.3 580 200 193.3 400 386,7 2500 80 81,7 160 165,7 125+160 143,3 250+315 273.4 580 200 193.3 400 386,7 2500 80 65,7 160 125+160 143,3 250+315 280,7 5800 200 193,3 400 395,3	2150	63+80	71,7	125+160	143,3	3900	125	130,0	250	260,0	555	0	160+200	185,0	315+400	370,0
2250 80 75,0 160 150,0 125 133,3 250+315 260,7 5650 200 188,3 400 376,7 2300 80 76,7 160 153,3 4050 125+160 135,0 250+155 270,3 570 200 188,3 400 376,7 2300 80 76,7 160 156,7 400 125+160 136,7 250+315 270,3 570 200 191,7 400 383,3 2450 80 81,7 160 163,3 4200 125+160 138,3 250+315 270,7 5800 200 193,3 400 383,3 2500 80 81,7 160 163,3 4200 125+160 134,3 250+315 270,7 5800 200 193,3 400 390,0 2500 80,50 160 107,0 4300 125+160 143,3 250+315 280,7 5900 200 196,7 400<	2200	63+80	73,3	125+160	146,7	3950	125	131,7	250+315	263,3	560	0	160+200	186,7	315+400	373,3
2200 80 76,7 160 153,7 4050 125:160 135,0 250:15 273.0 570 200 190,0 400 383.0 2550 80 78,3 160 156,7 4100 125:160 135,7 250:15 273.4 570 200 190,0 400 383.0 2400 80 80,0 160 160,7 125:160 133.3 250:415 273.6 580 200 193.3 400 383.0 2450 80 81,7 160 163.3 4200 125:160 140,0 250:135 273.7 580 200 195,0 400 383.7 2550 80 85,0 160 106,7 125:160 143,3 250:135 285.7 5950 200 195,7 400 355.3 2600 80-100 86,7 160+200 173,3 4350 125:160 143,0 250.135 286,7 5950 200 195,3 <t< td=""><td>2250</td><td>80</td><td>75,0</td><td>160</td><td>150,0</td><td>4000</td><td>125</td><td>133,3</td><td>250+315</td><td>266,7</td><td>565</td><td>0</td><td>200</td><td>188,3</td><td>400</td><td>376,7</td></t<>	2250	80	75,0	160	150,0	4000	125	133,3	250+315	266,7	565	0	200	188,3	400	376,7
2250 80 78,3 160 156,7 4100 125+160 136,7 250+15 273,3 570 200 191,7 400 383,3 2400 80 80,0 160 160,7 125+160 136,7 250+15 276,7 570 200 191,7 400 383,3 2450 80 81,7 160 163,3 4200 125+160 140,0 250+315 276,7 580 200 193,3 400 396,0 2500 80 85,0 160 100,7 4230 125+160 143,3 250+315 286,0 580 200 195,0 400 395,0 2500 80 85,0 160 170,0 4330 125+160 143,3 250+315 286,0 580 200 195,0 400 395,3 2500 80+100 85,7 160+200 173,7 4300 125+160 145,0 250+315 280,0 580 200 1	2300	80	76,7	160	153,3	4050	125+160	135,0	250+315	270,0	570	0	200	190,0	400	380,0
2400 80 80,0 160 160,0 125+160 133,3 250+315 276,7 5800 200 193,3 400 386,7 2450 80 81,7 1160 163,3 4200 125+160 140,0 250+315 226,0 5800 200 193,3 400 386,7 2500 80 65,3 160 166,7 4250 125+160 141,7 230+315 283,3 5950 200 193,3 400 386,7 2600 80+100 86,7 160+200 173,3 4350 125+160 143,3 250+315 286,7 5950 200 193,3 400 393,7 2600 80+100 86,7 160+200 173,3 4350 125+160 143,0 250+315 280,0 6000 200 193,3 400 396,7 2700 80+100 88,3 160+200 176,7 Termitiant-filter auto-filter	2350	80	78,3	160	156,7	4100	125+160	136,7	250+315	273,3	575	0	200	191,7	400	383,3
2450 80 81,7 160 163,3 4200 125+160 140,0 250+15 280,0 5850 200 195,0 400 390,0 2500 80 85,0 160 160,7 125+160 141,7 230+315 285,0 5850 200 195,0 400 390,0 2550 80 85,0 160 100,0 125+160 143,3 250+315 285,3 5950 200 195,0 400 395,3 2650 80+100 86,7 160+200 173,3 125+160 145,0 250+315 280,0 5950 200 195,0 400 395,3 2650 80+100 86,7 160+200 176,7 Terriittau-start=true true true true true true true true	2400	80	80,0	160	160,0	4150	125+160	138,3	250+315	276,7	580	0	200	193,3	400	386,7
2500 80 83,3 100 166,7 4230 123:160 141,7 230:315 283,8 5900 200 196,7 400 393,3 2550 80 85,0 1160 110,0 4300 125:150 143,3 250:153 283,0 5900 200 196,7 400 393,3 2600 80:100 86,7 160:200 173,3 125:150 143,0 250:435 290,0 6000 200 196,7 400 395,7 2650 80:100 88,3 160:200 173,7 125:150 143,0 250:435 290,0 6000 200 200,0 400,0 395,7 2700 80:100 90,0 156:4200 176,7 125:150 145,0 250:435 290,0 6000 200,0 400,0 400,0 2700 80:100 90,0 156:4200 176,7 Territherbandbredlette = Terranifrequeuez, 52,5% * Terriniterfrequeuz. 52,5% * Terriniterfrequeuz. 52,5% * Terriniterfrequeuz. 52,5% * Te	2450	80	81,7	160	163,3	4200	125+160	140,0	250+315	280,0	585	0	200	195,0	400	390,0
2550 80 85,0 160 170,0 4300 125+160 143,3 250+155 286,7 5950 200 198,3 400 396,7 2600 80+100 86,7 160+200 173,3 125+160 145,0 250+15 280,7 6000 200 198,3 400 396,7 2650 80+100 86,3 160+200 176,7 Territitau/Filter zur Ermitting der Pegl aus Motordrehal und Motorschwigung 2650* 143,3 250*315 290,0 200 200,0 400,0 2700 80+100 90,0 160+200 180,0 Territitau/Filter zur Ermitting der Pegl aus Motorschwigung 270* 5950 200 198,3 400 400,0	2500	80	83,3	160	166,7	4250	125+160	141,7	250+315	283,3	590	0	200	196,7	400	393,3
2650 80+100 88,7 160+200 173,3 4350 125+160 145,0 250+315 290,0 6000 200 200,0 400,0 2650 80+100 88,3 160+200 176,7 Territituar/Filter zur Ermititung der Pegel aus Motordrehzahl und Motorschwingung 2 500 6000 200 200,0 400,0 400,0 2700 80+100 90,0 160+200 180,0 Territiterandrreise = Ternendreguenz ± 6,25% * Termitterfequenz 55% * Termitterfequenz 55% * Termitterfequenz 56% * Termitterfeq	2550	80	85,0	160	170,0	4300	125+160	143,3	250+315	286,7	595	0	200	198,3	400	396,7
2650 80+100 88,3 160+200 176,7 Terzmittlauf-Filter zur Ermittlung der Pegel aus Motordrehzahl und Motorschwingung 2700 80+100 90,0 160+200 180,0 Terzfilterbandbreite = Terznennfrequenz ± 6,25% * Terzmittenfrequenz	2600	80+100	86,7	160+200	173,3	4350	125+160	145,0	250+315	290,0	600	0	200	200,0	400	400,0
2700 80+100 90,0 160+200 180,0 Terzfilterbandbreite = Terznennfrequenz ± 6,25% * Terzmittenfrequenz	2650	80+100	88,3	160+200	176,7	Terzmittlauf-Fi	lter zur Ermittlun	g der Pegel aus I	Motordrehzahl u	nd Motorschwingu	ng					
	2700	80+100	90,0	160+200	180,0	Terzfilterband	oreite = Terznenn	frequenz ± 6,25%	6 * Terzmittenfre	quenz						

In den Bereichen wo zwei Terzfilter erforderlich sind wird der Ordnungspegel aus ernergetisch addierten Terzschalldruckpegeln bestimmt.

$$L_{P \ Ordnung} = 10 * lg(10^{\left(\frac{L_{P \ Terz1}}{10}\right)} + 10^{\left(\frac{L_{P \ Terz2}}{10}\right)})$$

Für die Berechnung von gewichteten Pegeln z.B. (A); (B); (C) gilt $L_{P \ gewichtet} = L_{P \ Messwert} + L_{P \ Filter}$

Beispiel einer (A)-gewichteten Schalldruckpegel - Ordnungsanalyse

Dieselbe "Fahrt" als 3-D Grafik

Artikulationsindex und modifizierter Artikulationsindex

Formeln zu Berechnung des Artikulationsindex AI und AI _{mod} aus Terzpegeln über der Drehzahl
--

	Al = 2, Al, H2 fur h = 1000 - 6000 1/min													
Frequenz [Hz]	Artikulationsindex Fall 1	Artikulationsindex Fall 2	Artikulationsindex [%]											
200	AI 200 Hz=WENN(64-LEQ200<0;0;(64-LEQ200)*1/30)	AI 200 Hz=WENN(LEQ200-34<0;1-((64-LEQ200)*1/30);0)	AI 200 Hz= AI Fall 1 + AI Fall 2											
250	AI 250 Hz=WENN(69-LEQ250<0;0;(69-LEQ250)*2/30)	AI 250 Hz=WENN(LEQ250-38<0;2-((69-LEQ250)*2/30);0)	AI 250 Hz= AI Fall 1 + AI Fall 2											
315	AI 310 Hz=WENN(71-LEQ315<0;0;(71-LEQ315)*3,25/30)	AI 310 Hz=WENN(LEQ315-41<0;3,25-((71-LEQ315)*3,25/30);0)	AI 315 Hz= AI Fall 1 + AI Fall 2											
400	AI 400 Hz=WENN(73-LEQ400<0;0;(73-LEQ400)*4,25/30)	AI 400 Hz=WENN(LEQ400-43<0;4,25-((73-LEQ400)*4,25/30);0)	AI 400 Hz= AI Fall 1 + AI Fall 2											
500	AI 500 Hz=WENN(75-LEQ500<0;0;(75-LEQ500)*4,5/30)	AI 500 Hz=WENN(LEQ500-45<0;4,5-((75-LEQ500)*4,5/30);0)	AI 500 Hz= AI Fall 1 + AI Fall 2											
630	AI 630 Hz=WENN(75-LEQ630<0;0;(75-LEQ630)*5,25/30)	AI 630 Hz=WENN(LEQ630-45<0;5,25-((75-LEQ630)*5,25/30);0)	AI 630 Hz= AI Fall 1 + AI Fall 2											
800	AI 800 Hz=WENN(75-LEQ800<0;0;(75-LEQ800)*6,5/30)	AI 800 Hz=WENN(LEQ800-45<0;6,5-((75-LEQ800)*6,5/30);0)	AI 800 Hz= AI Fall 1 + AI Fall 2											
1000	AI 1000 Hz=WENN(74-LEQ1000<0;0;(74-LEQ1000)*7,25/30)	AI 1000 Hz=WENN(LEQ1000-44<0;7,25-((74-LEQ1000)*7,25/30);0)	AI 1000 Hz= AI Fall 1 + AI Fall 2											
1250	AI 1250 Hz=WENN(72-LEQ1250<0;0;(72-LEQ1250)*8,5/30)	AI 1250 Hz=WENN(LEQ1250-42<0;8,5-((72-LEQ1250)*8,5/30);0)	AI 1250 Hz= AI Fall 1 + AI Fall 2											
1600	AI 1600 Hz=WENN(70-LEQ1600<0;0;(70-LEQ1600)*11,5/30)	AI 1600 Hz=WENN(LEQ1600-40<0;11,5-((70-LEQ1600)*11,5/30);0)	AI 1600 Hz= AI Fall 1 + AI Fall 2											
2000	AI 2000 Hz=WENN(67-LEQ2000<0;0;(67-LEQ2000)*11/30)	AI 2000 Hz=WENN(LEQ2000-37<0;11-((67-LEQ2000)*11/30);0)	AI 2000 Hz= AI Fall 1 + AI Fall 2											
2500	AI 2500 Hz=WENN(65-LEQ2500<0;0;(65-LEQ2500)*9,5/30)	AI 2500 Hz=WENN(LEQ2500-35<0;9,5-((65-LEQ2500)*9,5/30);0)	AI 2500 Hz= AI Fall 1 + AI Fall 2											
3150	AI 3150 Hz=WENN(63-LEQ3150<0;0;(63-LEQ3150)*9/30)	AI 3150 Hz=WENN(LEQ3150-33<0;9-((63-LEQ3150)*9/30);0)	AI 3150 Hz= AI Fall 1 + AI Fall 2											
4000	AI 4000 Hz=WENN(60-LEQ4000<0;0;(60-LEQ4000)*7,75/30)	AI 4000 Hz=WENN(LEQ4000-30<0;7,75-((60-LEQ4000)*7,75/30);0)	AI 4000 Hz= AI Fall 1 + AI Fall 2											
5000	AI 5000 Hz=WENN(56-LEQ5000<0;0;(56-LEQ5000)*6,25/30)	AI 5000 Hz=WENN(LEQ5000-26<0;6,25-((56-LEQ5000)*6,25/30);0)	AI 5000 Hz= AI Fall 1 + AI Fall 2											
6300	AI 6300 Hz=WENN(51-LEQ6300<0;0;(51-LEQ6300)*2,5/30)	AI 6300 Hz=WENN(LEQ6300-21<0;2,5-((51-LEQ6300)*2,5/30);0)	AI 6300 Hz= AI Fall 1 + AI Fall 2											

	Al-mod = Σ; 6300 Al-mod; Hz für n = 1000 - 6000 1/min	
Frequenz	Modifizierter Artikulationsindex	
[Hz]	[%]	
200	Al-mod 200 HZ=(64-LEQ200)*1/30	
250	Al-mod 250 HZ=(69-LEQ250)*2/30	
315	AI-mod 315 HZ=(71-LEQ315)*3,25/30	Berechnet wird der Artikulationsindex aus stetig fallenden Geraden
400	Al-mod 400 HZ=(73-LEQ400)*4,25/30	wie dargestellt
500	Al-mod 500 HZ=(75-LEQ500)*4,5/30	
630	Al-mod 630 HZ=(75-LEQ630)*5,25/30	
800	Al-mod 800 HZ=(75-LEQ800)*6,5/30	Der AI hat Bereiche mit "0"-Werten und erreicht maximal 100%.
1000	Al-mod 1000 HZ=(74-LEQ1000)*7,25/30	Daher auch die Fallunterscheidung.
1250	Al-mod 1250 HZ=(72-LEQ1250)*8,5/30	· · · · ·
1600	Al-mod 1600 HZ=(70-LEQ1600)*11,5/30	
2000	Al-mod 2000 HZ=(67-LEQ2000)*11/30	Der Al _{mod} kann Werte über 100% erreichen
2500	Al-mod 2500 HZ=(65-LEQ2500)*9,5/30	
3150	Al-mod 3150 HZ=(63-LEQ3150)*9/30	
4000	Al-mod 4000 HZ=(60-LEQ4000)*7,75/30	
5000	Al-mod 5000 HZ=(56-LEQ5000)*6,25/30	
6300	Al-mod 6300 HZ=(51-LEQ6300)*2.5/30	

Beispiel hierzu

Beispiel AI_{mod} für 1000 Hz

$$AIM_{1000} = (74 - LEQ_{1000}) * \frac{7,5}{30}$$

H. Inter Leller / Unitering 5.7.1994 H. Luop -H. tallner 06622 / 502, -23 Calculation of the articulation index based on third octave bands 74 719 21 0 Sound pressure level Athicklahan Inclut Mochlied band Frequency Hz dB 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 A A A 7 -0117 -0,14 0,14 74 0,15 0,2 073 73 72 71 -0.22 -0.11 0,11 0,24 0,48 0,72 -0 0,30 0,45 0,60 0,35 0,52 0,70 0,43 0,65 0,87 A 0,28 0,56 0,85 0,28 70 -0 20 -0,06 -0.13 0,43 0,75 0,87 .08 0.96 0,38 0,76 1,15 1,53 0,06 0,13 0,22 0,32 0,43 1,05 69 0.57 0.90 1,30 1,20 68 67 66 0,71 1,05 1,22 1,52 1.45 1.13 1,74 1,69 1,41 1,70 0,85 1.20 1.40 0,36 0,20 0.54 0,99 1,35 1,57 65 0 1,92 2,30 2,68 0,73 1,10 1,46 1,14 .17 1,98 6 0,01 0,33 0,76 1.65 2,38 2,60 2.41 2,26 2,54 2,83 0,32 0,40 0,47 0,53 0,86 0,97 1,08 63 1,42 1,80 2,10 2,28 0.03 2,65 0,30 62 61 0,06 2,82 3,06 1,83 2,20 0,95 r 2,89 1.70 3,04 3,25 3,13 2.10 2.45 3.11 0,60 60 0,13 ,19 ,85 25 0,90 1,20 1,50 3.83 3,39 .56 .58 2,56 2,93 3,30 3,66 4,02 4,39 4,76 0,17 0,20 59 58 57 56 55 1,30 1,90 1,99 2,80 3.62 3.68 4.22 0,26 2,55 2,70 2,85 3,96 4,24 4,52 4,81 4,60 4,97 5,36 5,75 3,69 3,90 3,86 4,10 2.98 2,22 0,80 0,87 0,93 1,00 0.2 1,51 2,27 2,41 3,15 2,54 1.80 0,77 0,27 4.12 0,21 0,42 0,62 3,32 4,34 2,85 2,10 1,03 2,55 2,70 2,84 0,30 1.73 3.00 3.50 1. 58 81 5,75 3.17 2,40 1,84 54 0.33 3,15 2,70 3,00 3,30 4,82 5,09 3.48 1.5 53 52 51 0,37 1,07 6,51 6,90 7,28 7,66 5,12 5,48 5,85 3.85 4.77 5.06 5.37 3,80 1,80 2,05 2,16 2,27 2,38 3,45 3,60 3,75 3,90 5,30 5,54 5,79 5,66 0,40 1,13 2.98 4,02 4,99 5,21 4,12 0,83 1,04 1,25 2,06 0,43 0,47 0,50 1,20 1,27 1,33 3,12 3,26 3,40 3,55 3,60 3,90 2,32 0.09 50 49 48 ,37 5,43 . 22 6,22 76 4.55 5,64 5,86 6,02 6,51 5,07 4.20 2,84 1.45 0,16 0,53 1,40 2,48 4,05 4,72 6,95 7,32 7,68 8,05 6,26 6,79 5,38 8.42 4,50 1,66 3,10 47 3,69 3,83 3,98 6,51 6,75 1,47 4,20 4,35 4,50 8,81 9,20 9,58 2,60 4,90 6,08 6,29 4.80 1,87 2,08 0.33 3.35 1,53 1,60 1,67 2,70 0,60 7.36 6,02 5,10 3,61 45 0,63 5.25 6 50 7,00 64 6.34 5.40 3.87 50 44 0.67 2,92 4,12 4.25 4,50. 7,25 7,92 9,96 8,41 6,66 5,70 2,50 2,70 575 6.5 0,70 1,73 3,02 10,34 8,78 9,15 9,51 7,25 8,21 6,97 4,38 0.66 3,14 3,25 3,25 42 0.73 1,80 8.50 7,29 6,30 6,60 4,64 4,90 2,91 3,12 41 40 0,77 0,83 11,10 0,80 1.93 11,50 6,90 7,20 7,50 9,88 5.16 3,33 39 0,83 2,00 a freedom 10,23 8,24 8,56 5,42 21,5 38 三國 5.67 3.74 1.08 37 0,90 2,13 2.20 11,00 8.87 7,80 3,95 1,16 36 0,93 9,20 nn 8,10 6,20 4,16 1.24 35 0.97 27 9,50 8,40 6,45 4,37 1,33 34 1,00 4,57 4,78 4,99 33 .61 2.40 2.47 2.53 2.60 9,5 9,00 6,96 1 ×., 1.49 1.07 32 31 n - sp 1.58 9 7.22 7,10 7 48 5,20 5,41 ,66 30 29 28 2.67 2.73 2.80 2.87 2.93 5,62 5,82 6,03 1.20 7,75 91 27 26 1.99 ,08 25 24 6. 3,00 3,07 3,13 3,20 (moch 23 1.37 2.24 2,32 22 21 20 41 2.50 1,47 3.27 2.5 The articulation index is given by the sum of the values read from the table corresponding to the sound pressure level in the different third octave bands. The contributions from frequency bands having levels higher than those for which values are tabulated or taken to be zero. For levels lower than those for which values appear in the table, the value at the bottom of the appropriate column is taken.

Der von Interkeller / Unikeller; Rieter; Autoneum entwickelte Artikulationsindex

Beispiel AI für 1000 Hz

$$AI1_{1000} = wenn(74 - LEQ_{1000} < 0; 0; (74 - LEQ_{1000}) * \frac{7,5}{30})$$

$$AI2_{1000} = wenn(LEQ_{1000} - 44 < 0; 7,25 - \left((74 - LEQ_{1000}) * \frac{7,5}{30}\right); 0)$$

$$AI_{1000} = AI1_{1000} + AI2_{1000}$$

Außengeräusch Vorbeifahrt ISO 362 (1994)

Arithmetische Mittelung der je 4 (A)-gewichteten Vorbeifahrten in der 2. und 3. Gangstufe nach Fahrzeugseiten getrennt.

Bildung des arithmetischen Mittelwertes aus 2. und 3. Gangstufe für beide Fahrzeugseiten getrennt. Der Maximalwert aus beiden Fahrzeugseiten darf 74 dB(A) nicht überschreiten.

Mittlere äquivalente Absorption einer Automobilkarosse

		0	0	0	0,45	6 0 4	0	0	0	0	5 0,3(00	2,0 0,2		0,0 k		0	0	0	0	0	0		12 3,55	2 9																
	8				0,4652272	0 3328984					0,4168675	0.000.000	0,3394212	90909000	0,0000000	100.0							urzeug	3,433724 6.7	2																
	500	0	0	0	0,42477273	0 34737231	0	0	0	0	0,4529793	0	0,36883065	0 02404040	1 0/386	0	0	0	0	0	0	0	im Fal	3,56963317 6 55	2.8																
	400	0	0	0	,37218182	26052023	0	0	0	0	,39814895	0	,52418598	00000000	000000000	0	0	0	0	0	0	0	IZIENT	,18616234 6 35	33																
NOIT	315	0	0	0	27509091 0	07236923 0	0	0	0	0	0,3433186 0	0	0,2/95413 0	0 02020220	1 00478	0	0	0	0	0	0	0	KOEFF	04237277 3 #NIV	NN#																
BSOR	250	0	0	0	18204545 0	04342154 0	0	0	0	0	0,19476	0 1227	0,15858	0 Facacaca	0 71288	071.10	0	0	0	0	0	0	TIONS	 92805063 3	NN#																
QUIV. A	200	0	0	0	16181818 0,	02894769 0	0	0	0	0	0,20558	0	0,76/39	10101010	0 48374	U DODE D	0	0	0	0	0	0	BSORP	 47929406 1, #NIV	AN#																
Ä	630	0	0	•	2727 0,	6154 0	0	0	0	0	5275		G/20		0 1001			0	0	0	0	0	A	-1 2003	4416	0368	1 15	0		0,/8	0.72	c/'n	0,39	0.42	0	Π	0,07	•	282	-	0 39
				_	0,5227	0 2264					0,38	000	0,38	0 0045	0 2215	2 47								 1,9629;	0	5											01				
	500	0	0	0	0,47727273	0 23630769	0	0	0	0	0,41865	0	0,41865	228200000	0 23295455	0								2,01678951	0.4608	0,5952	1 05	0		0,79	0,69	0,/4	U,41	0.31			0,02		707 U		0 42
IZIENT	400	0	0	0	0,41818182	0 17723077	0	0	0	0	0,367975	0	0,36/9/5	0.01500000	0.21500000	0	0	0	0	0	0	0	DN	1,76318077	0.3456	0,7872	0 02	0		0,56	0,46	16,0	0,38	0.25	0		0,03	0	0 135	221 22	0.37
KOEFF	315	0	0	0	30909091	04923077	0	0	0	0	0,3173	0	0,31/3	0101010	24431010	0	0	0	0	0	0	0	IREIBL	,48155804	0.096	0,4992	0.68	0		0,47	0,46	0,405	U,43	0.24	0		0,04	0	0.204		0 32
TIONS	250	0	0	0	20454545 0	02953846 0	0	0	0	0	0,18	0	0	1500001	15909091	0	0	0	0	0	0	0	BESCH	91226573 1	0.0576	0,192	0.45	0		0,34	0,28	0,31	0,20	0.15	0		0	0	0 111		0 18
BSORP	200	0	0	0	18181818 0	01969231 0	0	0	0	0	0,19	0	0,19	0 10200400	10706455 0		0	0	0	0	0	0	AUTEIL	 79741958 0,	0.0384	0,192	10	0		0,3	0,29	GK7'N	0,13	0.06	0		0	0	0.075	2.212	0 19
A	ime [m²]	1,56	0,14	0,55	0,89 0,1	1 47 0 0	0.43	0,12	0,40	0,28	1,08	0,15	0,88	1 00 0	4,00 0,	116	0.53	0.80	0.38	0.52	0.65	0,60	B	22,29 0,1								į	er/PV	-				-	-		
äche	Wirksa Fläche			-							-														PUR	Felt	Maara	TPO		velours	PVC	standard	tull leatn	nveece	TPO		vleece	0dI	Meere		Veece
same Fl	Akustisch wirksam	100%	20%	100%	40%	%0 <u>/</u>	100%	100%	100%	100%	100%	100%	100%		2001 289	100%	100%	100%	100%	100%	100%	100%			Headliner	Headliner	Carnot	carpet	8 8	seats	seats	seats	seats	load side trir	load side trir		load mat	load mat	narral shalf		door trim
Wirk	Akustisch unwirksam	%0	80%	%0	%09 0%/	30%	%0	%0	%0	%0	%0	%0	%0	%0	12%	%0	%0	%0	%0	%0	%0	%0	Fläche		.95 m²		2 m²			, /6 m ²				m²			m²		2 m²		m²
Fläche	B256-B226 Fläche [m²]	1,56	0,70	0,55	2,23	2,10	0.43	0,12	0,40	0,28	1,08	0,15	0,88	100	4,00	1 16	0.53	0,80	0,38	0.52	0,65	0,60		25,43	-			1						-		1	<u>~</u>				
													trim fabria		T							m																			
	tionsflächen	ent panel	-	Ð	nd rear tunnel	IIBIIS	des			ar	oors	oors tabric	pors or rear side	DOIS OF LEAR SIDE	eats	indow	aht/left windoe	tht/left window	wopu	tor trim	e comp. Mat	e comp. Side tr		ũ																	
	Absorpt	Instrum	Dash	Consol	Floor a	Head lin	Cowl si	A pillar	B pillar	C-D pill	Front d.	Front d	Rear do	Least of	Dear co	Front w	Front riv	Rear ric	Rear wi	Rear do	Luggag	Luggag		SUMM																	

Berechnung der äquivalenten Absorption aus Absorptionsgrad – siehe auch unter Hallraum:

$$A * \propto_{S} = 55,3 * V * \frac{1}{c_{0} * \sqrt{\frac{t_{u}}{T_{0}} + 1}} * (\frac{1}{T_{Probe}} - \frac{1}{T_{leer}})$$

PKW mit bekannter Serienausstattung

PKW mit Ledersitzen, TPO-Folie auf Bodenauskleidung und Dachauskleidung

Entsprechend der Abnahme der Äquivalenten Absorption des Fahrgastraumes nimmt der Schalldruckpegel im Fahrzeug um ca. 4,5 dB zu

Reifen-, Abgasmündungs- und Motorgeräuschsimulation im Halbfreifeldraum (Absorptionsraum KFZ)

Ausgewertet werden Schalldruckpegeldifferenzen aus einer oder mehreren Mikrofon(en) Bezugsposition(en) und mindestens 4 Mikrofonpositionen im Fahrzeug jeweils ernergetisch gemittelt mit Gewichtung für die niedrigste Einfügedämmung, das niedrigste Schalldämm-Maß (s. Formel unten).

Reifengeräusch Bauteilanalyse

Deutlich der Positive Einfluss der Bodenteppich Systeme

Reifengeräusch Benchmark

Formel zu Reifen-, Abgasmündungs- und Motorgeräuschsimulation und Karosseriedämmung

Mit Gewichtung für die niedrigste Einfügedämmung, das niedrigste Schalldämm-Maß.

Abgasmündungsgeräusch Bauteilanalyse

Abgasmündungsgeräusch Benchmark

Motorgeräusch Bauteilanalyse

Deutlich zu sehen die Verschiebung der Resonanzen der Bodenteppichsysteme. Deutlich der Positive Einfluss der Bodenteppich Systeme

Motorgeräusch Benchmark

Karosserie Einfügedämmung im Hallraum

Karosseriedämmung Bauteilanalyse

Karosseriedämmung Benchmark

Nachhallzeit T_{60} Zeit, in Sekunden, die der Schall benötigt, um nach dem Abschalten der Schallquelle um 60 dB abzuklingen, gerechnet aus T_{30} oder T_{20} . Siehe auch Abschnitt Nachhallzeit. Arithmetische Mittelung aus 12 Mikrofonpositionen zu jeweils 30° auf dem Messkreis.

Nachhallzeit Bauteilanalyse

Nachhallzeit Benchmark

Der deutlich negative Einfluss der Ledersitze bei der Nachhallzeit im Fahrzeug erhöht den Schalldruckpegel im Fahrzeug um bis zu 3 dB.