Formelsammlung Formelsammlung

Formelsammlung

Formelsammlung

Formelsammlung

Formelsammlung

Formelsammlung

Formelsammlung

Formelsammlung

1.	Grundlagen	
	Bezugsgrößen für Schalldruck; Schallleistung	Seite 2
	Filterkurven A-; B-; C-Gewichtung	Seite 3
	Terz-; Oktavfilter und deren Bandbreiten	Seite 5
	Rauschsignale / Impulse	Seite 7
2.	Luftströmungswiderstand	
	• Definition	Seite 10
	 Berechnung aus Faser- und Vlieseigenschaften 	Seite 11
	 Luftströmungswiderstand perforierter, gelochter Folien und Platte 	Seite 14
3.	Luftschallabsorption /Luftschalldämpfung	
	 Schallkennimpedanz (Impedanzrohr ISO 10 534) 	Seite 16
	 "Normierte" Luftschallabsorption 	Seite 20
	Hallraum (ISO 354)	Seite 22
	 Bewertung des Absorptionsgrades nach ISO 11654 	Seite 28
4.	Luftschalldämmung /Luftschallisolation	
	 Schalldämmass R basierend auf Schalleistung 	Seite 31
	Apamat	Seite 31
	 Decken-, Fensterprüfstand /LS-box 	Seite 31
	 Bewertetes Schalldämm-Maß 	Seite 34
	 Resonanz / Verlustfaktor / Speichermodul 	Seite 36
5.	Intensität / Schalleistung für die "Weiße Industrie"	Seite 46
6.	Kraftfahrzeugakustik	
	 Schalldruckpegel und Ordnungsanalyse 	Seite 48
	Artikulationsindex	Seite 49
	 Außengeräusch Vorbeifahrt ISO 362 	Seite 52
	Bauteil- und Fahrzeuganalyse; Benchmark mittels Geräuschsimulation	
	Mittlere äquivalente Luftschallabsorption einer KFZ-Karosserie	Seite 53
	 Lautsprechersimulation Reifen-, Motor-, Abgasmündungsgeräusch 	Seite 55
	Karosserie Einfügedämmung	Seite 58
	Nachhallzeit im Fahrzeug	Seite 59

2. Luftströmungswiderstand

Der Luftströmungswiderstand ist die wichtigste Eigenschaft poröser Materialen die Luftschall absorbieren sollen.

Liegt der spezifische, Luftströmungswiderstand eines Werkstoffs in der Nähe der 2-fachen Kennimpedanz der Luft 820 Pa s/m in einem Bereich also von 600 - 1200 Pa s/m ist die Luftschallabsorption im optimalen Bereich.

Unterhalb 200 Pa s/m (¼ Kennimpedanz) und oberhalb 3200 Pa s/m (4-fache Kennimpedanz) wird die Fähigkeit eines Werkstoffs Luftschall zu absorbieren deutlich reduziert.

Luftströmungswiderstand nach EN 29053; ISO 9053:

Definition analog zum Ω 'schen Gesetz ist der Luftströmungswiderstand R definiert als Quotient aus der durch einen laminaren Luftstrom durch eine poröse Probe erzeugten Druckdifferenz Δp an der Probe und dem laminaren Luftstrom q_v durch die Probe.

$$R = \frac{\Delta p}{q_v}$$

mit Δp als Druckdifferenz beiderseits des Probenkörpers gegenüber dem Atmosphärendruck [Pa] q_v als durch den Probenkörper hindurchtretenden Volumenstrom [m³/s]

Der spezifische Luftströmungswiderstand R_s ist definiert als Produkt aus dem Luftströmungswiderstand R und der durchströmten Probenfläche A.

$$R_{\rm s} = R * A$$

mit R als Strömungswiderstand des Probenkörpers [Pa s/m³]

A als Querschnittsfläche des Probenkörpers senkrecht zur Durchströmungsrichtung [m²]

Der längenbezogene Strömungswiderstand r ist, homogenes Probenmaterial vorausgesetzt, definiert als Quotient aus dem spezifischen Luftströmungswiderstand R_s und der Probendicke d.

$$r = \frac{R_s}{d}$$

mit R_s als spezifischem Luftströmungswiderstand [Pa s/m] d als Dicke des Probenkörpers in Durchströmungsrichtung [m]

Die lineare Strömungsgeschwindigkeit ist definiert als Quotient aus dem laminaren Luftstrom durch Probe und der durchströmten Probenfläche.

$$u = \frac{q_v}{A}$$

mit q_v als durch den Probenkörper hindurchtretenden Volumenstrom [m³/s] A als Querschnittsfläche des Probenkörpers senkrecht zur Durchströmungsrichtung [m²]

Durchströumungsgeschwindigkeiten von 5 bis $0.5 * 10^{-3}$ m/s sind zulässig als Luftgleichstrom bzw. Effektivwert eines Luftwechselstroms.

Berechnung aus Faser- und Vlieseigenschaften

Luftströmungswiderstand berechnet nach F.P. Mechel (Formulas of Acoustics)

Widerstand bei Anströmung parallel zur Faserachse

$$\Xi_{parallel} = 3.94 * \frac{\eta}{a^2} * \frac{\mu^{1.413}}{1 - \mu} * (1 + 27 \,\mu^3)$$

Widerstand bei kardierten Faservliesen mit

Faserdurchmesser 12 – 20 μm

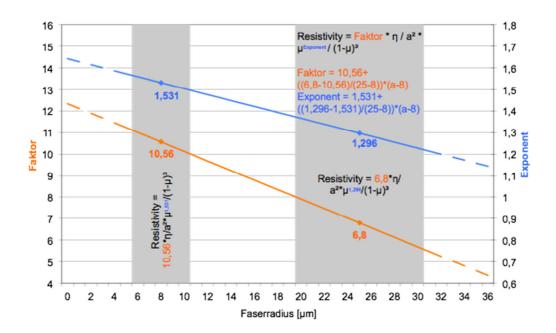
$$\Xi_{senkrecht} = 10,56 * \frac{\eta}{a^2} * \frac{\mu^{1,531}}{(1-\mu)^3}$$

Faserdurchmesser 40 – 60 μm

$$\Xi_{senkrecht} = 6.8 * \frac{\eta}{a^2} * \frac{\mu^{1,296}}{(1-\mu)^3}$$

Für beliebige Faserdurchmesser wird jeweils durch die beiden Faktoren und die beiden Exponenten jeweils eine 2-Punkte Gerade gelegt nach

$$\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - 1_1}$$


Damit ergibt sich

$$\Xi_{senkrecht} = Faktor * \frac{\eta}{a^2} * \frac{\mu^{Exponent}}{(1-\mu)^3}$$

mit

$$Faktor = 10,56 + \frac{(6,8 - 10,56)}{(25 - 8)} * (a - 8)$$

Exponent =
$$1,531 + \frac{(1,296 - 1,531)}{(25 - 8)} * (a - 8)$$

Widerstand bei aerodynamisch gebildeten Faservliesen

$$\Xi_{random} = 4 * \frac{\eta}{a^2} * (0.55 * \frac{\mu^{\left(\frac{4}{3}\right)}}{(1-\mu)} + \sqrt{2} * \frac{\mu^2}{(1-\mu)^3})$$

mit a als Radius der Faser [m]

 η als dynamischer Zähigkeit der Luft [Pa s]

Z.B. Luft bei 20°C und 1013 hPa Umgebungsdruck η = 18,2321365 μ Pa s

μ als Massivität des Faservlieses zu berechnen aus

$$\rho_{Vlies} = y * \rho_{Faser} + (1 - y) * \rho_{Luft}$$

 ϕ als Porosität eines Faservlieses zu berechnen aus

$$\rho_{Vlies} = x * \rho_{Luft} + (1 - x) * \rho_{Faser}$$

und Massivität + Porosität = 1

Faserdurchmesser d und Faserradius a Berechnet aus Faserfeinheit [dtex] und Faserdichte [kg/m³]

$$Faserdurchmesser\ d[mm] = \sqrt{\frac{4}{\pi} * \frac{1}{10} * \frac{Faserfeinheit\ [dtex]}{Faserdichte\ [\frac{kg}{m^3}]}}$$

mit

Faserradius
$$a = \frac{d}{2}$$

als Zahlenwertegleichung mit folgenden Erweiterungen der Einheiten

Faserfeinheit: $1 [dtex] = \frac{1 [g]}{10^4 [m]}$

Faserdichte: $\frac{1 [kg]}{1 [m^3]} = \frac{10^3 [g]}{1 [m^3]}$

Fläche: $1 m^2 = 10^6 mm^2$

Umrechnung der Einheiten denier [den] nach tex [tex]und dezitex [dtex]:

1 tex = 10 g Fasermasse auf 10.000 m Faserlänge

1 dtex = 1 g Fasermasse auf 10.000 m Faserlänge

1 den = 1 g Fasermasse auf 9.000 m Faserlänge

1 tex = 9 den oder 10 dtex = 9 den

Der Faktor $\frac{dtex}{den}$ beträgt also $\frac{10}{9}$ = 1,111

1 dtex = 0,9 den;

1 den = 1,111 dtex

Beispiel:

2 den = 2,2 dtex

4 den = 4,4 dtex

6 den = 6,7 dtex

12 den = 13 dtex

...

Luftströmungswiderstand poröser, gelochter Folien und Platten

Zur Abschätzung des Spezifischen Luftströmungswiderstandes bei Materialien mit perforierten Folieneilagen sind die abgebildeten Graphen hilfreich.

Damit lässt sich über den zuvor experimentell oder per Simulation ermittelten notwendigen Strömungswiderstand ein erforderlicher Lochdurchmesser und die dazugehörige Lochteilung ermitteln.

Eine Bestätigung der Prognosen sollte am fertigen Materialkonzept durchgeführt werden.

Die Messtechnik und Mathematik hierzu:

Das Messgerät nach EN 29053 Verfahren "B" erzeugt einen Luftwechselstrom mit einem oszillierenden Kolben:

- Durchmesser 20 mm
- Hub 14 mm
- Frequenz 2 Hz

Bei einer Prüffläche mit dem Durchmesser 100 mm ergibt sich für die unbelegte Prüffläche eine Durchströmungsgeschwindigkeit von 4,976 mm/s

Mit folgenden Formeln für den Volumenstrom

$$V_{eff} = \frac{1}{\sqrt{2}} * \omega * \frac{\pi}{4} d^2 * h = 39081,64 \text{ mm}^3/\text{s}$$

und die Durchströmungsgeschwindigkeit

$$v_{eff} = V_{eff} * rac{\pi}{4} d^2$$
 oder $v_{eff} = rac{V_{eff}}{offene Fläche}$

jeweils auf Basis der Prüffläche des Messgerätes

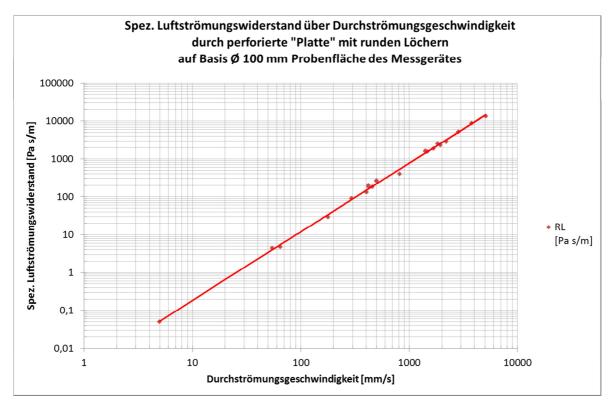
Die Prüffläche bei 100 mm Durchmesser beträgt 7853,98 mm²

Über den (die) Lochdurchmesser der Perforation und deren dazugehörigen Teilungsfläche(n) lässt sich die durchströmte Fläche oder die Durchströmungsgeschwindigkeit in Bezug auf die Prüffläche bestimmen.

In den unten dargestellten Graphen ist jeweils der spezifische (gemessene) Luftströmungswiderstand über der durchströmten Fläche bzw. der Durchströmungsgeschwindigkeit dargestellt und folgen den Potentialfunktionen

$$y = a * x^{-c}$$


für die Abhängigkeit der durchströmten Fläche und


$$y = b * x^c$$

für die Abhängigkeit der Strömungsgeschwindigkeit

Anhand dieser Graphen lassen sich für nahezu alle Kombinationen aus Lochdurchmesser und Lochteilung die dazugehörigen spezifischen Luftströmungswiderstände berechnen oder ablesen.

